上次介绍了数学分析的一些参考资料及建议,下面介绍一下高等代数课程。高等代数课程的学时和内容都比数学分析要少,但因其抽象性强,尤其强调代数与几何的联系,如果仅仅停留在矩阵层面,是不够而且浅薄的。
教材:
北大四版
与华东四版的数学分析一样,是许多考研院校的指定用书,但是内容缺乏更新,正文可读性差(初学者几乎不知道他在说什么)只用做其课后习题即可,考学硕的还要关注补充题。丘维声《高等代数创新教材》+《学习指导书》
许多考研院校及竞赛题都能从本书找到原题或者影子。上册非常适合初学者,也适合学习线性代数课程的同学。上册基本是线性代数课程的内容,语言通俗易懂,例题多,而且很典型。下册就有点徐森林的味道了,太杂,很多东西超出高等代数教学大纲,因此得砍掉一半左右。尤其是可对角化和Jordan标准型那一块,题目太多,大家哪怕全部看完了也不大能记得住,不利于构建体系,因此这一块可配合谢启鸿的网课及白皮书,多项式内容是所有高代教材里最全的,多项式大家只要把丘研磨到位即可。最后提一下,大家购买时只用购买创新教材,指导书更厚,而且和教材内容很多是重复的,只是把一部分习题作为了例题,因此大家如果做习题碰到了困难,可查阅电子版指导书阅读即可。
谢启鸿《高等代数学》教材(俗称绿皮书)+《高等代数》指导书(俗称白皮书)
复旦数院人手一本,无人不知白皮书的存在。这套教材看作丘的精简浓缩版,很多解答比丘的更好,更精炼,而且还有一个特点,这本书注重代数与几何的联系(第三,第四,第九章很多题目都给出了平行的几何语言和几何证法)。在B站有谢启鸿的网课及习题课,可谓是全网最好的高等代数视频,非常精彩,尤其是第七章可谓是全书精华所在。白皮书的很多题目技巧都很典型,而且例题之间联系紧密,逐步升华,每读一遍都有不同的收获。
李炯生《线性代数》
你以为这就是工科生学的线性代数?科大的所有专业学的都是线性代数,因为高等代数这个名字是从苏联传下来的,欧美的叫法都是线性代数,我国大部分院校数学系开设的线性代数课程为了与其他专业做区分,沿用了苏联的叫法。科大这本书前两章技巧性太高,是适合欣赏,不适合应试,同样Jordan标准型专门给了一章而且前两章专门介绍了根子空间和循环子空间这两个考研经常涉及但是很多教材没有专门讲解的内容。优点是如果精读了本书,可以打通高等代数的很多板块,因为本书体系感强,缺点是本书例子不够,而且没有答案,部分题目难度过大,超出研究生考试难度。
学习建议:1.多项式到二次型大家阅读丘,课后习题部分题目要做
2.特征值、Jordan标准型、欧式空间、酉空间大家配合网课阅读谢启鸿,回过头如果有时间再阅读丘,此时你也一眼能够分辨哪些是超纲东西。