三元组顺序表表示的稀疏矩阵加法_群论笔记-群表示论(1)

本文组织如下:先补充完整群的基本概念中直积与半直积的内容;再引入群表示论。


直积的定义有些拗口,我用自己的语言表述一下,可能不是很数学:将两个群各自的一个群元素

并排放在一起形成新群的群元,新群的元素记为
。这个新群是
的直积群,记作
。直积群的群乘为
,即来自同一个群的先做完群乘,再把不同的群乘结果并排放在一起。

直积群是否构成一个群需要简单的论证,但过于显然不需要论证。特别地指出,直积群的单位元为两个群的单位元的直积,即

的逆元为
,这里不像其他地方提到新的群的逆元时通常会各自取逆并交换顺序,因为直积群的两个群元分属两个群,所以这里的并排言外之意是可以没有群乘的关系,即允许交换律

个人选择用一个不严格的但是已经接触过的例子来理解直积的概念:对于一个二粒子系统

,算符
其中算符
仅作用于粒子1,算符
仅作用于粒子2,有
。这里没有写成“并排”的样子,而是给元素也加上了
来强调直积。至于算符和波函数是否构成一个群,可以在学了后面的内容之后再来具体讨论。

这个例子见:

HelgaE:高等量子理论-角动量相关笔记(2)​zhuanlan.zhihu.com
8c1b59729a8d4d09bcb8cdc0925ec9cb.png

直积满足的交换律,意味着两个群的群元之间的乘法关系是对易的,而这里的对易有两种:一是两个群的群元之间的群乘数学上是对易的,也就是真正意义上的

;二是两个群是完全无关的,所以自动对易。物理上来说,第一种对易类似于
(从本质上来看的话,这个也可以算第二种)或者
(这一个看上去很trivial,实际上很合适);第二种对易类似于
或者
其中算符
仅作用于粒子1,算符
仅作用于粒子2(就是上面的那个例子)。

两个群的直积可以构成一个新的群,对应地,从一个群也可以通过直积分解出两个群。

直积因子:如果群G有两个子群

,每个群元可以唯一表示为
,其中
,且G的群乘满足
。则称G是其子群
的直积,子群
是G的直积因子。

这里的子群

只有单位元一个公共元素,证明很简单,如果有第二个公共元素p,那么
,与“可以唯一地被表示”矛盾,即证;两个子群都是G的不变子群,证明也很简单,对来自
的元素
,其同类元素
仍在
中,
同理,即证。

一个简单的例子:二维平面上的矢量相加群,可以分解为一维的x方向的矢量相加群和y方向的矢量相加群,该平面上任何一个二维矢量都可以表示为x方向的矢量和y方向的矢量的直积(也是相加)。这两个一维矢量相加群只有一个公共元素0矢量,为它们的单位元࿱

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值