实战讲解,文章较长,对爬虫比较熟悉的浏览翻看章节 2.3 获取新闻文本内容。
写爬虫时经常对网址发起请求,结果返回的html数据除了标签能看懂,其他的全部是乱码。大家如果对爬虫感兴趣,请耐心阅读本文,我们就以百度风雨榜爬虫为例学习下乱码处理问题。
http://top.baidu.com/buzz?b=1
百度风云榜一共有50个关键词,我们先任选其中一个打开看看。
一、实验目的
我们的目的是chardect库学会处理网络响应数据的乱码问题,结合具体爬虫实战讲解。
二、代码实战
2.1 定位关键词及其链接
F12键盘打开开发者工具,我们定位关键词及其对应的html标签。在这里我们使用pyquery库定位 class属性为'keyword'的td。
#百度风云榜页面网址(含有50个热门新闻的关键词)
fengyunbang_url = 'http://top.baidu.com/buzz?b=1'
resp = requests.get(fengyunbang_url)
#从html文件中解析出 事件字段和 网址字段
doc = PyQuery(resp.text)
for item in doc.items('.keyword'):
keyword = item('a').text().split(' ')[0]
keyword_link=item('a').attr.href
print(keyword,keyword_link)
运行,结果keyword全部为乱码,没有一点中文的痕迹。
这就是我们今天要克服的问题-html编码问题。
遇到这种问题问题,我们可能会先在html标签中查找charset字符集。一般charset值有utf-8、gbk、gb2312、ascii等。
再次运行,汉字正常显示。
2.2 定位搜索页面新闻链接
上面我们获取到了关键词及其链接,浏览器点击“46年吃3万个汉堡”对应的链接,跳转到 百度搜索页,如下图。
我们想获取新闻内容,而要获取新闻内容,我们就要知道新闻对应的链接。首先我们要定位,如下图。这里我们使用另外一种方式定位链接-正则表达式。
def get_keywords_news_links(keyword_link):
"""
访问关键词百度网址,得到相关新闻的link
:param keyword_link:
:return:
"""
headers = {'User-Agent': '你的user-agent'}
resp = requests.get(keyword_link, headers=headers)
bsObj = BeautifulSoup(resp.text, 'html.parser')
news_items = bsObj.find_all('div', {'class': 'result c-container '})
news_links = []
for item in news_items:
links = re.findall('href="(.*?)"', str(item))
news_links.extend(links)
#防止链接重复
news_links = set(news_links)
return news_links
但是后来发现有的链接是无法访问的,比如运行中居然抽取出含有http://cache.baiducontent***这种的网页,经过测试,只要剔除掉这种链接,剩下的都为有效链接。
2.3 获取新闻文本内容
有了上文获取到的链接,我们写个简单的代码获取文本内容。由于获取到的网址来源成百上千的网站,如果要精确获取新闻内容,需要对每一个网站一对一的进行定位。这样太麻烦,为了快速方便,我们使用正则匹配出所有的中文内容。
def get_news_content(link):
"""
根据新闻网址,获取新闻数据
:return: 新闻内容
"""
resp = requests.get(link)
#最终只有汉字保留。
news_text = ''.join(re.findall('[\u4e00-\u9fa5]+', resp.text))
return news_text
但是运行过程中,经常返回空。说明正则匹配中文时候匹配不到。很可能的原因是页面中没有中文,但是我们检测了这些页面都是有中文的,那么很有可能是因为页面乱码,导致正则[\u4e00-\u9fa5]+无法匹配到中文。经过检测,真的是乱码。解决办法resp.encoding='编码'。但是编码是什么值呢?这里我用新的方法,chardect库检测二进制数据中采用的编码方式。
def get_news_content(link):
"""
根据新闻网址,获取新闻数据
:return: 新闻内容
"""
resp = requests.get(link)
news_text = ''.join(re.findall('[\u4e00-\u9fa5]+', resp.text))
#网页乱码,导致news_text为空
if not news_text:
#根据二进制数据检测html的编码。
#resp.content获取html二进制数据
chaset = chardet.detect(resp.content)['encoding']
#解决编码问题
resp.encoding = chaset
news_text = ''.join(re.findall('[\u4e00-\u9fa5]+', resp.text))
return news_text
return news_text
2.4 编写爬虫主函数
编写爬虫主函数,将数据保存到csv中。
#主函数,访问并保存所有的新闻数据
def FetchAndSave():
#百度风云榜页面网址(含有50个热门新闻的关键词)
fengyunbang_url = 'http://top.baidu.com/buzz?b=1'
resp=requests.get(fengyunbang_url)
resp.encoding='gb2312'
#新建excel文件保存数据。
csvf = open('data.csv', 'a+', encoding='gbk', newline='')
writer = csv.writer(csvf)
writer.writerow(('news_content', 'keyword'))
#从heml文件中解析出 事件字段和 网址字段
doc = PyQuery(resp.text)
for itm in doc.items('.keyword'):
keyword = itm('a').text().split(' ')[0]
keyword_link = itm('a').attr.href
news_links = get_keywords_news_links(keyword_link)
for news_link in news_links:
try:
content = get_news_content(news_link)
#防止新闻内容为空的写入csv中
if content:
writer.writerow((content, keyword))
except:
print(news_link)
#运行爬虫
FetchAndSave()
运行爬虫,采集了50个关键词共388篇新闻内容。
数据采集
文本处理分析
数据结构
杂文
打赏还可提问哦!
如果你有什么问题,也可以扫码提问。大邓知无不言,言无不尽。