我们已经比较完整得介绍了有关无锁的概念和使用方法。相对于有锁的方法,使用无锁的方式编程更加考验一个程序员的耐心和智力。但是,无锁带来的好处也是显而易见的,第一,在高并发的情况下,它比有锁的程序拥有更好的性能;第二,它天生就是死锁免疫的。就凭借这2个优势,就值得我们冒险尝试使用无锁的并发。
这里,我想向大家介绍一种使用无锁方式实现的Vector。通过这个案例,我们可以更加深刻地认识无锁的算法,同时也可以学习一下有关Vector实现的细节和算法技巧。(在本例中,讲述的无锁Vector来自于amino并发包)
我们将这个无锁的Vector称为LockFreeVector。它的特点是可以根据需求动态扩展其内部空间。在这里,我们使用二维数组来表示LockFreeVector的内部存储,如下:
private final AtomicReferenceArray> buckets;
变量buckets存放所有的内部元素。从定义上看,它是一个保存着数组的数组,也就是通常的二维数组。特别之处在于这些数组都是使用CAS的原子数组。为什么使用二维数组去实现一个一维的Vector呢?这是为了将来Vector进行动态扩展时可以更加方便。我们知道,AtomicReferenceArray内部使用Object[]来进行实际数据的存储,这使得动态空间增加特别的麻烦,因此使用二维数组的好处就是为将来增加新的元素。
此外,为了更有序的读写数组,定义一个称为Descriptor的元素。它的作用是使用CAS操作写入新数据。
static class Descriptor {
public int size;
volatile WriteDescriptor writeop;
public Descriptor(int size, WriteDescriptor writeop) {
this.size = size;
this.writeop = writeop;
}
public void completeWrite() {
WriteDescriptor tmpOp = writeop;
if (tmpOp != null) {
tmpOp.doIt();
writeop = null; // this is safe since all write to writeop use
// null as r_value.
}
}
}
static class WriteDescriptor {
public E oldV;
public E newV;
public AtomicReferenceArray addr;
public int addr_ind;
public WriteDescriptor(AtomicReferenceArray addr, int addr_ind, E oldV, E newV) {
this.addr = addr;
this.addr_ind = addr_ind;
this.oldV = oldV;
this.newV = newV;
}
public void doIt() {
addr.compareAndSet(addr_ind, oldV, newV);
}
}
上述代码第4行定义的Descriptor构造函数接收2个参数,第一个为整个Vector的长度,第2个为一个writer。最终,写入数据是通过writer进行的(通过completeWrite()方法)。
第24行,WriteDescriptor的构造函数接收4个参数。第一个参数addr表示要修改的原子数组,第二个参数为要写入的数组索引位置,第三个oldV为期望值,第4个newV为需要写入的值。
在构造LockFreeVector时,显然需要将buckets和descriptor进行初始化。
public LockFreeVector() {
buckets = new AtomicReferenceArray>(N_BUCKET);
buckets.set(0, new AtomicReferenceArray(FIRST_BUCKET_SIZE));
descriptor = new AtomicReference>(new Descriptor(0,null));
}
在这里N_BUCKET为30,也就是说这个buckets里面可以存放一共30个数组(由于数组无法动态增长,因此数组总数也就不能超过30个)。并且将第一个数组的大小为FIRST_BUCKET_SIZE为8。到这里,大家可能会有一个疑问,如果每个数组8个元素,一共30个数组,那岂不是一共只能存放240个元素吗?
如果大家了解JDK内的Vector实现,应该知道,Vector在进行空间增长时,默认情况下,每次都会将总容量翻倍。因此,这里也借鉴类似的思想,每次空间扩张,新的数组的大小为原来的2倍(即每次空间扩展都启用一个新的数组),因此,第一个数组为8,第2个就是16,第3个就是32。以此类推,因此30个数组可以支持的总元素达到。
这数值已经超过了2^33,即在80亿以上。因此,可以满足一般的应用。
当有元素需要加入LockFreeVector时,使用一个名为push_back()的方法,将元素压入Vector最后一个位置。这个操作显然就是LockFreeVector的最为核心的方法,也是最能体现CAS使用特点的方法,它的实现如下:
public void push_back(E e) {
Descriptor desc;
Descriptor newd;
do {
desc = descriptor.get();
desc.completeWrite();
int pos = desc.size + FIRST_BUCKET_SIZE;
int zeroNumPos = Integer.numberOfLeadingZeros(pos);
int bucketInd = zeroNumFirst – zeroNumPos;
if (buckets.get(bucketInd) == null) {
int newLen = 2 * buckets.get(bucketInd – 1).length();
if (debug)
System.out.println(“New Length is:” + newLen);
buckets.compareAndSet(bucketInd, null,
new AtomicReferenceArray(newLen));
}
int idx = (0×80000000>>>zeroNumPos) ^ pos;
newd = new Descriptor(desc.size + 1, new WriteDescriptor(
buckets.get(bucketInd), idx, null, e));
} while (!descriptor.compareAndSet(desc, newd));
descriptor.get().completeWrite();
}
可以看到,这个方法主体部分是一个do-while循环,用来不断尝试对descriptor的设置。也就是通过CAS保证了descriptor的一致性和安全性。在第23行,使用descriptor将数据真正地写入数组中。这个descriptor写入的数据由20~21行构造的WriteDescriptor决定。
在循环最开始(第5行),使用descriptor先将数据写入数组,是为了防止上一个线程设置完descriptor后(22行),还没来得及执行23行的写入,因此,做一次预防性的操作。
因为限制要将元素e压入Vector,因此,我们必须首先知道这个e应该放在哪个位置。由于目前使用了2维数组,因此我们自然需要知道e所在哪个数组(buckets中的下标位置)和数组中的下标。
第8到10行通过当前Vector的大小(desc.size),计算新的元素应该落入哪个数组。这里使用了位运算进行计算。这几行代码看起来也许你会觉得有些奇怪,我的解释如下:
之前说过,LockFreeVector每次都会成倍的扩容。它的第1个数组长度为8,第2个就是16,第3个就是32,依次类推。它们的二进制表示就是:
00000000 00000000 00000000 00001000:第一个数组大小,28个前导零
00000000 00000000 00000000 00010000:第二个数组大小,27个前导零
00000000 00000000 00000000 00100000:第三个数组大小,26个前导零
00000000 00000000 00000000 01000000:第四个数组大小,25个前导零
他们之和就是整个LockFreeVector的总大小,因此,如果每一个数组都恰好填满,那么总大小应该类似这样的数值(以4个数组填满为例):
00000000 00000000 00000000 01111000:4个数组都恰好填满时的大小
导致这个数字进位的最小条件,就是加上二进制的1000。而这个数字正好是8(FIRST_BUCKET_SIZE就是8)。这就是第8行代码的意义。它可以使得数组大小发生一次二进制的进位(如果不进位说明还在第一个数组中),进位后前导零的数量就会发生变化。而元素所在的数组,和pos(第8行定义的变量)的前导零直接相关。每进行一次数组扩容,它的前导零就会减1。如果从来没有扩容过,它的前导零就是28个。以后,逐级减1。这就是第9行获得pos前导零的原因。第10行,通过pos的前导零可以立即定位使用哪个数组(也就是得到了bucketInd的值)。
第11行,判断这个数组是否存在。如果不存在,则创建这个数组,大小为前1个数组的2倍,并把它设置到buckets中。
接着再看一下元素没有恰好填满的情况:
00000000 00000000 00000000 00001000:第一个数组大小,28个前导零
00000000 00000000 00000000 00010000:第二个数组大小,27个前导零
00000000 00000000 00000000 00100000:第三个数组大小,26个前导零
00000000 00000000 00000000 00000001:第四个数组大小,只有一个元素
那么总大小就是:
00000000 00000000 00000000 00111001:元素总个数
总个数加上二进制1000后,得到:
00000000 00000000 00000000 01000001:
显然,通过前导零可以定位到第4个数组。而剩余位,显然就表示元素在当前数组内的偏移量(也就是数组下标)。根据这个理论,我们就就可以通过pos计算这个元素应该放在给定数组的哪个位置。通过第19行代码,获得pos的除了第1位数字1以外的其他位的数值。因此,pos的前导零可以表示元素所在的数组,而pos的后面几位,则表示元素所在这个数组中的位置。由此,第19行代码就取得了元素的所在位置idx。
到此,我们就已经得到新元素位置的全部信息,剩下的就是将这些信息传递给Descriptor让它在给定的位置把元素e安置上去即可。这里,就通过CAS操作,保证写入正确性。
下面来看一下get()操作的实现:
@Override
public E get(int index) {
int pos = index + FIRST_BUCKET_SIZE;
int zeroNumPos = Integer.numberOfLeadingZeros(pos);
int bucketInd = zeroNumFirst – zeroNumPos;
int idx = (0×80000000>>>zeroNumPos) ^ pos;
return buckets.get(bucketInd).get(idx);
}
在get()的实现中,3~6行使用了相同的算法获得所需元素的数组以及数组中的索引下标。这里简单的通过buckets定位到对应的元素即可。
这样,对于Vector来说2个重要的方法就已经实现了。其他方法也是非常类似的,这里就不再详细讨论了。