逻辑回归 Logistic Regression
sigmoid/logistic function
逻辑回归实际上是分类问题,二分类或者多分类问题。其中逻辑回归中logistic公式表达为:
y = 1/1+e^{-z}
此公式也可以叫做sigmoid函数。
该式子中,z取值为0时,可以看作二分类的边界;z大于0时,y大于等于0.5,那么此时可以将其预测为“1”类;z小于0时,y小于0.5,那么此时可以预测为“0”类。
代价函数
在逻辑回归中,最常用的是代价函数是交叉熵(Cross Entropy),交叉熵是一个常见的代价函数,在神经网络中也会用到。
在这里我们将用到的交叉熵损失函数叫做Loss Function for Binary Classification。
表达式为:
loss = -(ylogy_p + (1-y)log(1-y_p))
当训练过程中设置mini-batch时,可以对二分类交叉熵进行平均化。
PyTorch示例实现
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[0], [1], [2]])
class LogisticRegressionModel(torch.nn.Module):
def __init__(self):
super(LogisticRegressionModel, self).__init__()
self.linear = torch.nn.Linear(1, 1)
def forward(self, x):
y_pred = F.sigmoid(self.linear(x))
return y_pred
model = LogisticRegressionModel()
criterion = torch.nn.BCELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)
for epoch in range(100):
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
print(epoch, loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()