logistic回归python代码_Logistic回归(有两类Python代码),LogisticRegression,附二,分类,pytorch...

逻辑回归 Logistic Regression

sigmoid/logistic function

逻辑回归实际上是分类问题,二分类或者多分类问题。其中逻辑回归中logistic公式表达为:

y = 1/1+e^{-z}

此公式也可以叫做sigmoid函数。

该式子中,z取值为0时,可以看作二分类的边界;z大于0时,y大于等于0.5,那么此时可以将其预测为“1”类;z小于0时,y小于0.5,那么此时可以预测为“0”类。

代价函数

在逻辑回归中,最常用的是代价函数是交叉熵(Cross Entropy),交叉熵是一个常见的代价函数,在神经网络中也会用到。

在这里我们将用到的交叉熵损失函数叫做Loss Function for Binary Classification。

表达式为:

loss = -(ylogy_p + (1-y)log(1-y_p))

当训练过程中设置mini-batch时,可以对二分类交叉熵进行平均化。

PyTorch示例实现

x_data = torch.Tensor([[1.0], [2.0], [3.0]])

y_data = torch.Tensor([[0], [1], [2]])

class LogisticRegressionModel(torch.nn.Module):

def __init__(self):

super(LogisticRegressionModel, self).__init__()

self.linear = torch.nn.Linear(1, 1)

def forward(self, x):

y_pred = F.sigmoid(self.linear(x))

return y_pred

model = LogisticRegressionModel()

criterion = torch.nn.BCELoss(size_average=False)

optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)

for epoch in range(100):

y_pred = model(x_data)

loss = criterion(y_pred, y_data)

print(epoch, loss.item())

optimizer.zero_grad()

loss.backward()

optimizer.step()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值