R循环有两个_循环子群

近 世 代 数 系 列 6本期导言回顾下Galois的定理: 假设 f( x)为有理系数多项式。 f( x) = 0可以根式解当且仅当 f( x)的Galois群是可解群。这告诉我们, 要判断 f( x)是否可以根式是否可以根式解总共分两步: 
  • 求出f(x)的Galois群Gal(f)

  • 判断Gal(f)是否是可解

比把大象装进冰箱少一步!如果跟另外一个人来分摊这两个工作的话, 像我这么懒的人, 肯定最先举手: 我做第二步!实际上第一步真的很难: 现在并没有一个统一的算法可以确定有理多项式的Galois群。我们知道一个群可解是意思是存在一个条件比较苛刻的子群序列, 也就是说如果你知道一个群的所有子群和它们之间的关系, 就应该能判断一个群是否可解。既然我们挑了一个自认为比较简单的, 我们就立个flag: 抽象的研究一个群的子群及子群之间的关系!1搜寻子群现在开始, 我们就抽象的来讨论群的子群。假设( G, ⋅)是一个群, 我们省略其中的运算“⋅”, 将 a ⋅  b记为 ab.现在我们就开始满世界找 G的子群!在头脑里努力的回忆子群的样子: 假设 H是 G的一个子集.那么 H是G的子群当且仅当下面的条件成立
  • G的单位元e要在H中

  • H对运算封闭

    ∀a, b ∊ H,  ab ∊ H
  • H对取逆封闭

    ∀a ∊ H,  a在G中的逆a−1 ∊ H
有了这把“尚方宝剑”, 我们就可以开始“搜查”所有 G的子集, 一个个“审问”看它们是不是 G的子群!但当 G的元素个数(称为 G的 阶数)稍微有点大时(比如16), 这样的子集就多得不得了(2 16个), 要把它们一个个“审完”, 咱们这辈子也不用做啥别的事了。所以这样蛮干是不行的!必须要先查一些“可疑”的子集!哪些是可疑的子集呢?以前考虑一个域 F上向量空间 V 的子空间的时候, 对于任意 V 中的向量 α, 我们都能找出一个子空间: ⟨ α⟩ := { λα∣ λ  ∊  F}我们是否可以利用这个经验?2循环子群现在假设 a  ∊ G是 G中的一个元素.上面的问题就是说, 能否从 a出发找出一个与此相关的 G的子群。我们假想 a在 G的一个子群 H中。根据上面的子群判断标准
  • e ∊ H

  • aa ∊ H

  • aaa ∊ H

  • aaaa ∊ H

  • ⋅⋅⋅⋅⋅⋅

  • a−1 ∊ H

  • a−1a−1 ∊ H

  • a−1a−1a−1 ∊ H

  • ⋅⋅⋅⋅⋅⋅

这好家伙, 把 a的一堆“好哥们”全部都扯进来了。我们把这些好哥们用下面的记号来记
  • m个a的乘积(m >0) 

    am := aa⋅⋅⋅a
  • m个a−1的乘积(m >0) 

    a−m := a−1a−1⋅⋅⋅a−1
  • 单位元 

    a0 := e
按照这种记号 { a i∣ i  ∊ℤ}⊆  H再仔细看下左边这个集合元素的乘积有什么特点。
ff23086ab9b0f6de525fb046d59f17cf.png
所以 a m与 a −m互为逆元.这实际上说明了 a i的逆元是 a −i, ∀ i  ∊ ℤ. a i与 a j的乘积呢?大家可以分 i, j同号和异号的不同情形验证下 a i a j =   a i + j( a i) j =   a ij这么看来这个集合{ a i∣ i  ∊ℤ}含单位元 e, 对运算封闭, 每个元素的 a i的逆元 a −i还在这个集合中。因此{ a i∣ i  ∊ℤ}已经是 G的一个子群.总结一下 命题 1 假设 G 是一个群,  a  ∊  G . 则 { a i∣ i  ∊ ℤ} 是 G 的子群。命题1中 G的子群{ a i∣ i  ∊ ℤ}称为由元素 a生成的子群, 这样的子群也称为 循环子群(cyclic subgroup), 记为 ⟨a⟩.如果很碰巧 G中存在一个元素 a使得 G = ⟨ a⟩, 则称 G是一个 循环群。很显然循环群中元素乘法交换, 是Abel群 例 1 假设 G = (ℤ , + ) , 则⟨3⟩ =  {3 i∣ i  ∊ ℤ} 注意, 这里 G 中的运算是“ +  ”,  因此命题 1 中的 a m 在这里体现为 a +   a +  ⋅⋅⋅ +   a =   ma 取 a = 1 , 我们有⟨1⟩ =  { i∣ i  ∊ ℤ} =  ℤ 因此(ℤ , + ) 是循环群。我们再来看一个例子 例 2 考虑二面体群 D n , n  ⩾3 . 回忆下  D n =  { e, ρ, ρ 2 , ⋅⋅⋅ , ρ n−1 , τ 0 , ⋅⋅⋅ , τ n−1} 其中 ρ 是绕原点逆时针旋转2 π/n . 这样一来, 对任意 i  ∊ℤ , 令 r 为 i 模 n 的余数,  也就是说 r  ∊ [0 , n−1] 且存在整数 q 使得 i =  qn +   r . 从而
f8f8cdc989362bf9d9f2d71efa3851ce.png
也就是说 ⟨ ρ⟩ =  { e, ρ, ⋅⋅⋅ , ρ n−1} 只有 n 个元素。 D n 不可能是循环群,  因为它不是Abel群。3循环子群的阶数上面我们看到循环子群的阶数(元素个数)既可以是无穷, 也可以有限, 那什么时候无穷, 什么时候有限呢?有限的时候, 有多少个元素呢?现在我们假设 G是一个群,  a是 G中元素.那么只能出现下面两种情形:  情形1:   a i ≠ a j,  ∀ i ≠ j.显然此时⟨ a⟩有无穷多个元素。 情形2: 存在 i < j使得 a i =   a j.两边同右乘以 a −i有 e =   a j a −i =   a j−i也就是说存在一个正整数 j−  i使得  a j−i =   e 引理 2 a 是群 G 中的一个元素,  如果存在 m > 0 使得 a m =  e , 则 ⟨ a⟩ =  { a i∣0  ⩽  i  ⩽  m−1} 如果 m 是最小的正整数使得 a m =  e , 则  e, a, ⋅⋅⋅ , a m−1 互不相同. 证明: 只需要证明 a i  ∊{ e, a, ⋅⋅⋅ , a m−1}对所有的整数 i  ∊ℤ成立. 由带余除法, 存在 q  ∊ ℤ, 0  ⩽  r  ⩽ m−1使得 i =   qm +   r从而
05fcd71a44bee7c1d9af44244d4d5556.png
因此 a i  ∊{ e, a, ⋅⋅⋅ , a m−1}.假设 m是最小的满足 a m =  e的正整数。如果{ e, a, ⋅⋅⋅ , a m−1}中有两个元素相同, 即存在0  ⩽  k < l  ⩽  m−1但 a k =  a l. 这样一来 a l−k =  e, 与 m的最小性矛盾。4元素的阶由上面的讨论, 我们发现, 循环子群⟨ a⟩的阶分为两种情况:  无穷和有限。 推论 3⟨ a⟩ 有限当且仅当存在正整数 m 使得 a m =  e . 此时 |⟨ a⟩| =  最小的正整数 m 使得 a m =  e 证明: 由上面的讨论, 一共分为两种情形。⟨ a⟩有限当且仅当情形2出现, 此时存在 m > 0使得 a m =  e.反过来, 如果存在 m >0使得 a m =   e, 引理2保证了⟨ a⟩有限。由引理2, 此时|⟨ a⟩| = 最小的正整数 m使得 a m =  e 定义 4 为了叙述方便,  我们定义 o( a) := |⟨ a⟩| 称为元素 a 的 阶 (order).显然当o( a)有限时, 它正好是使得 a m =  e的最小的正整数 m.由于⟨ a⟩ =  ⟨ a −1⟩, 因此o( a) = o( a −1). 引理 5 (1) 一个循环群的子群还是循环群 (2) 如果o( a) =   m , 则 a i =  e 当且仅当 m∣ i . 证明: (1) 假设⟨ a⟩是一个循环群, 而 H是⟨ a⟩的非平凡子群.从而存在 k ≠0使得 a k  ∊ H, 此时 a −k  ∊ H. 因此, 总存在 k > 0使得 a k  ∊ H.令 m为正整数集合 S := { k > 0∣ a k  ∊  H}中的最小数. 那么对于任意 a i  ∊ H, 利用带余除法 i =   qm +   r, 0   ⩽  r < m此时  a r =   a i−mq =  a i( a m) −q  ∊  H由 m的最小性得 r = 0. 因此  m∣ i,   a i = ( a m) q  ∊⟨ a m⟩即 H ⊆⟨ a m⟩. 另一个方面,  a m  ∊  H, 从而⟨ a m⟩⊆  H. 所以 H = ⟨ a m⟩是循环群。(2). 由于 m是最小的使得 a m =  e的正整数, 如果 a i =  e, 利用与(1)类似的带余除法可证明 m∣ i.反过来, 如果 m∣ i, 即 i =   mq, 这时 a i = ( a m) q =   e5方幂的阶如果o( a) =  ∞, 显然o( a r) = ∞对所有的正整数 r成立。如果o( a) =   m,  n是一个正整数, 那o( a n)等于多少呢?实际上 命题 6 假设o( a) =   m ,   n 是一个正整数,  d = ( m, n) 为 m 与 n 的最大公因数。则(1) ⟨ a n⟩ =  ⟨ a d⟩(2) o( a n) =   m/d 证明: 由于 n是 d的倍数( n =  dq), 所以  a n = ( a d) q  ∊⟨ a d⟩因此⟨ a n⟩⊆⟨ a d⟩.另一方面, 由于 d是 m, n的最大公因数, 因此存在整数 u, v使得 mu +   nv =   d因此  a d =   a mu( a n) v =   e( a n) v  ∊ ⟨ a n⟩从而⟨ a d⟩⊆⟨ a n⟩.(2) ⟨ a d⟩中元素恰为那些 a i, 0  ⩽  i < m且 d∣ i一共有 m/d个。因此o( a n) =  |⟨ a n⟩| =  |⟨ a d⟩| =   m/d考虑 n阶循环群中元素的阶, 我们发现对于每个 d∣ n,  d阶元的个数恰为 φ( d), 由此可以得到
08c6a881267040701e7785cb70767145.png
利用命题6和引理5, 我们很容易给出循环群的所有子群。比如, 如果⟨ a⟩是一个6阶循环群, 则它的所有子群为{ e} , ⟨ a 2⟩ , ⟨ a 3⟩ , ⟨ a⟩分别有1, 3, 2, 6个元素。6乘积的阶本期最后, 我们来看下如果群 G中有两个元素 a, b.它们的阶为 o( a) =   m, o( b) =   n那么它们的乘积 ab的阶是多少呢?这个一般情况下是不太好确定的。但是 命题 7 若 ab  =  ba 且 m, n 互素,  那么 o( ab) =   mn 证明: 由于 ab =   ba, 所以( ab) mn =   a mn b mn =   e因此o( ab)有限。由引理5(2), 我们有 o( ab)∣ mn现假设o( ab) =  k, 则 ( ab) k =   e由于 ab =   ba, 因此 a k b k = ( ab) k =   e从而  a k =   b −k所以o( a k) = o( b −k) = o( b k)从而
558f267fabcf9b20a0b367f7371c9cf3.png
因此  m( k, n) =   n( k, m)由于( m, n) = 1, 因此  m∣( k, n) , n∣( k, m)从而 m∣ k, n∣ k再次利用( m, n) = 1得到  mn∣ k所以 mn与o( ab)相互整除, 都是正整数, 两者相等。 注: 如果 m, n不互素, 大家可能觉得 ab的阶数应该是 m, n的最小公倍数。实际上这个一般情况下不对。比如: 在一个12阶的循环群⟨ x⟩中, 即o( x) = 12, 令  a =   x 4 , b =   x 2我们有  ab =   ba, o( a) = 3 , o( b) = 6但是 o( ab) = o( x 6) = 2
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值