傅里叶变换音频可视化_H5录音音频可视化-实时波形频谱绘制、频率直方图

本文介绍了使用傅里叶变换进行音频可视化的技术,包括波形、频率直方图的实时绘制。通过纯JS代码实现,适用于H5录音及跨平台移植。详细讲解了FFT算法如何将PCM数据转换为频率信息,以及绘制频率直方图和波形显示的方法。
摘要由CSDN通过智能技术生成

这段时间给GitHub Recorder开源库添加了两个新的音频可视化功能,比以前单一的动态波形显示丰富了好多(下图后两行是不是比第一行看起来丰满些);趁热打铁写了一个音频可视化相关扩展测试代码,下面这张就是测试Gif截图,看起来还算过得去,测试地址

上面这些波形、频率的计算和显示都是由纯js代码编写的,并未用到浏览器专有特性,因此可以方便的移植到其他语言实现,比如移植到Android、IOS原生实现。

FrequencyHistogramView音频可视化频率直方图显示

此功能源码:frequency.histogram.view.js + lib.fft.js 12kb大小源码,音频可视化频率直方图显示;外观为上面Gif图最后一行,可通过参数配置绘制成不同的外观。

此扩展核心算法参考Java开源库jmp123的代码编写的,jmp123版本0.3;直方图我特意优化主要显示0-5khz语音部分,其他高频显示区域较小,不适合用来展示音乐频谱。

要获得PCM频率信息,需要将PCM由时域转换成频域,这里就用到了FFT算法快速傅里叶变换,里面水很深我就没有深入研究了,这里直接用的jmp123里面的FFT实现,纯js代码实现100行不到。我们只管使用就ok了,假设有44100hz采样率的16位PCM数据,取1024个采样数据经过FFT变换后,会输出512个频率信息点,每个点之间的频率间隔为44100/2/512=43hz,0hz是第1个点,1khz是第1000/43个点,以此类推,最高能识别到22050hz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值