长方形有多少条线段_几何计数公式,数正方形、长方形、三角形

博客主要介绍小学阶段几何计数中正方形、长方形、三角形的计算公式。如正方形利用加法原理,长方形用乘法原理,三角形本质是数线段。还列举了一些常见变化,如求特定面积长方形个数、以点为顶点的三角形和四边形个数等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

几何计数小学阶段主要是数正方形、长方形、三角形。有许多公式和技巧,今天主要介绍一下这三种图形的计算公式。

正方形

图1:n×n个小方格组成的n行n列的正方形

图2:m×n个小方格组成的n行m列的长方形(长被分成m等份,宽被分成n等份)

16940e04627ac25d27a6a8a33a74bd8e.png

图1正方形个数:

n²+(n-1)²+(n-2)²+........+3²+2²+1²

=n(n+1)(2n+1)÷6

1×1的正方形有:n²个

2×2的正方形有:(n-1)²个

...

n×n的正方形有:1²个

图2正方形个数:mn+(m-1)(n-1)+(m-2)(n-2)+.......+(m-n+1)(n-n+1)

1×1的正方形有:mn个

2×2的正方形有:(m-1)(n-1)个

...

n×n的正方形有:(m-n+1)(n-n+1)个

数正方形的公式,主要利用加法原理,把每一类的个数相加。

长方形(一个长方形的长被分成a份,宽被分成b份)

长方形个数:((a+1)a÷2)×((b+1)b÷2)

数长方形方形的公式,主要利用乘法原理:长边上的线段数×宽边上的线段数

图3

上图中:长被分成4份,宽被分成3份,所以长方形个数=((4+1)×4÷2)×((3+1)×3÷2)=60(个)

三角形,如图4,计算这种图形中的三角形个数,本质就是数线段

因为所有的三角形都以最上面的点为顶点,所以看下面两条线段共包含多少个线段即可。

图4

数线段的方法,如果一个线段上共n个点,那么线段数是:

1+2+…+(n-1)=n(n-1)/2

或者熟悉排列组合的话,可以用组合C(n,2)

所以图4中共有三角形:C(6,2)×2=30(个)

上面说的都是一些最基本的公式,但实际考试时变化会非常多。下面列出一些比较常见的变化。

①图2中,如果每一个小方格的边长都是1,那么图2中面积是2的长方形有多少个。

(提示:分两类,竖着的和横着的)

图5

如上图,在互相平行的直线a,b上分别有m个点和n个点。

②图5中,以这些点为顶点可以画出多少个三角形。

(提示:分两类,边在a上;边在b上)

③图5中,以这些点为顶点可以画出多少四边形。

④图5中,把所有的点都连起来,那么在a与b之间最多有多少个交点(不包括a和b上的点)。

(提示:a与b间的每一个交点都是由两条直线相交而得,这两条直线在a,b上的4个点可以组成四边形,转化成题③)

内容概要:《2024年中国城市低空经济发展指报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值