几何计数小学阶段主要是数正方形、长方形、三角形。有许多公式和技巧,今天主要介绍一下这三种图形的计算公式。
正方形
图1:n×n个小方格组成的n行n列的正方形
图2:m×n个小方格组成的n行m列的长方形(长被分成m等份,宽被分成n等份)

图1正方形个数:
n²+(n-1)²+(n-2)²+........+3²+2²+1²
=n(n+1)(2n+1)÷6
1×1的正方形有:n²个
2×2的正方形有:(n-1)²个
...
n×n的正方形有:1²个
图2正方形个数:mn+(m-1)(n-1)+(m-2)(n-2)+.......+(m-n+1)(n-n+1)
1×1的正方形有:mn个
2×2的正方形有:(m-1)(n-1)个
...
n×n的正方形有:(m-n+1)(n-n+1)个
数正方形的公式,主要利用加法原理,把每一类的个数相加。
长方形(一个长方形的长被分成a份,宽被分成b份)
长方形个数:((a+1)a÷2)×((b+1)b÷2)
数长方形方形的公式,主要利用乘法原理:长边上的线段数×宽边上的线段数
图3
上图中:长被分成4份,宽被分成3份,所以长方形个数=((4+1)×4÷2)×((3+1)×3÷2)=60(个)
三角形,如图4,计算这种图形中的三角形个数,本质就是数线段
因为所有的三角形都以最上面的点为顶点,所以看下面两条线段共包含多少个线段即可。
图4
数线段的方法,如果一个线段上共n个点,那么线段数是:
1+2+…+(n-1)=n(n-1)/2
或者熟悉排列组合的话,可以用组合C(n,2)
所以图4中共有三角形:C(6,2)×2=30(个)
上面说的都是一些最基本的公式,但实际考试时变化会非常多。下面列出一些比较常见的变化。
①图2中,如果每一个小方格的边长都是1,那么图2中面积是2的长方形有多少个。
(提示:分两类,竖着的和横着的)
图5
如上图,在互相平行的直线a,b上分别有m个点和n个点。
②图5中,以这些点为顶点可以画出多少个三角形。
(提示:分两类,边在a上;边在b上)
③图5中,以这些点为顶点可以画出多少四边形。
④图5中,把所有的点都连起来,那么在a与b之间最多有多少个交点(不包括a和b上的点)。
(提示:a与b间的每一个交点都是由两条直线相交而得,这两条直线在a,b上的4个点可以组成四边形,转化成题③)