图像sobel梯度详细计算过程_基于FPGA实现图像处理中的空域滤波操作

本文详细介绍了基于FPGA的图像处理,涵盖Sobel模板滤波、高斯滤波器、排序滤波器以及Canny边缘检测的实现过程。讨论了线性滤波与非线性滤波,特别强调了Sobel算子的水平和垂直梯度计算,以及在FPGA中如何优化实现。同时,提到了高斯滤波器的两种结构和中值滤波的高效实现策略。最后,阐述了Canny算子的边缘检测步骤,包括非极大值抑制和双阈值判断。
摘要由CSDN通过智能技术生成

本文将完成图像处理中的各种常见的空域滤波器设计,主要涉及线性滤波和非线性滤波。线性滤波主要是模板滤波,各类模板滤波的方法是一致的,这里具sobel和高斯模板滤波进行设计说明;非线性滤波则主要设计排序滤波器和canny模板滤波。

模板滤波

基于FPGA实现图像处理中的空域滤波操作

本文将完成图像处理中的各种常见的空域滤波器设计,主要涉及线性滤波和非线性滤波。线性滤波主要是模板滤波,各类模板滤波的方法是一致的,这里具sobel和高斯模板滤波进行设计说明;非线性滤波则主要设计排序滤波器和canny模板滤波。

模板滤波

sobel模板滤波

这里主要实现3x3模板的sobel算子,这里的两个sobel算子分别如下:

270286bcca0ce4a5e23a6daff8325ed5.png

因此这里可以采用简单的加减法完成运算,基于FPGA进行实现时,需要进行行缓存结构,这里假设的sobel是3x3的结构,因此对应需要进行图像的3行数据缓存,其实现结构如下:

c19d4c8f5a56d75791d5f39f64c9e886.png

p0~p8是对应像素灰度值,对应于水平方向,则相对应得到的结果为:

d934feb7e6989312f40e597b0e03fc65.png

对应于垂直方向,则相对应得到的结果为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值