给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为1000。
示例 1:
输入: "babad"
输出: "bab"
注意: "aba"也是一个有效答案。
示例 2:
输入: "cbbd"
输出: "bb"
思考这个问题第一是从List两边考虑,先找到两个相同的点, 然后各像中心移动1步。这个方法被PASS的原因是遇到输入“aaabaaaa”时,两边同时移动则只能返回“aaaa”
第二次从回文子串的中心考虑,先假设List中每一个点ii都有回文子串,接下来验证l[ii-1]和 l[ii+1]是否相同,如果相同就继续验证l[ii-2]和 l[ii+2]。对比所有结果,返回最大的子串。
class Solution:
def longestPalindrome(self, s):
""":type s: str:rtype: str"""
l=list(s)
length = len(l)
if length == 0:
return ""
if length == 1:
return s
temp=[]
result = []
i = 0
ii = 0
j = 1
flag = True
while ii < length:
i = ii - 1
j = ii + 1
while j < length and l[ii] == l[j]:
j = j + 1
temp = l[ii:j]
while (i>=0 and j<=length-1 and l[i] == l[j]):
temp = l[i:j+1]
i = i - 1
j = j + 1
if len(temp) > len(result):
result = temp
ii = ii + 1
if len(result) == 0:
return l[0]
return "".join(result)
时间复杂度是O(n^2),不知道是不是算错了,因为结果此方法速度在最后10%中。
这里提供一个大神的O(n)解法,用到了倒叙list对比。
class Solution:
def longestPalindrome(self, s):
"""
:type s: str
:rtype: str
"""
# 如果字符串长度小于2或者s等于它的倒序,则直接返回s
if len(s) < 2 or s == s[::-1]:
return s
n = len(s)
# 定义起始索引和最大回文串长度,odd奇,even偶
start, maxlen = 0, 1
# 因为i=0的话必然是不可能会有超过maxlen情况出现,所以直接从1开始
for i in range(1, n):
# 取i及i前面的maxlen+2个字符
odd = s[i - maxlen - 1:i + 1] # len(odd)=maxlen+2
# 取i及i前面的maxlen+1个字符
even = s[i - maxlen:i + 1] # len(even)=maxlen+1
if i - maxlen - 1 >= 0 and odd == odd[::-1]:
start = i - maxlen - 1
maxlen += 2
continue
if i - maxlen >= 0 and even == even[::-1]:
start = i - maxlen
maxlen += 1
return s[start:start + maxlen]