二、选择题
1. 设n X X X ,,,21 是总体),(2σμN 的样本, X 是样本均值, 记:
∑=--=n i i X X n S 122
1
)(11, ∑=-=n i i X X n S 1
22
2)(1, ∑=--=n i i X n S 122
3
)(11μ, ∑=-=n i i X n S 1
22
4)(1μ, 则服从自由度为1-n 的t 分布的统计量是( B ). (A )
1
1
--n S X μ; (B )
1
2
--n S X μ; (C )
n
S X 3
μ-; (D )
n
S X 4
μ-.
2.设总体()
2,~σμN X ,
()3,,,21≥n X X X n 为来自总体X 的样本,X 为样本均值,2
S 为样本方差,则下列统计量中服从()1-n t 分布的是( B ).
(A)
()
σ
μ-X n
; (B)
)X S
μ-; (C )
()∑
=-n
i i X 1
2
21
μσ
;(D )()221n S σ
-. 3.设1021,,,X X X 是来自正态总体)1,0(N 的样本,则统计量
∑∑==+=41105
22
)(61)(41i i i i X X Y 服从的分布是 ( B )
(A) )2,0(N ; (B) )2(2
χ; (C) )10(2
χ; (D) )10,0(N . 4.设随机变量)1,(~u N X ,)(~2n Y χ,又X 与Y
独立,令T =
结论正确的是( B )
(A))1(~-n t T ; (B) )(~n t T ; (C) )1,0(~N T ; (D)),1(~n F T
5.设随机变量~()(1)X t n n >,21
Y X
=
,则( C ) (A)2~()Y n χ; (B) 2
~(1)Y n χ-; (C))1,(~n F Y ; (D)),1(~n F Y .
三、计算题
1.设321,,X X X 是总体),(~2
σμN X 的一个样本,其中μ已知而0>σ未知,则以下