本文结构:
是什么?
有什么算法?
数学原理?
编码实现算法?
1. 是什么?
简单地理解,就是根据一些 feature 进行分类,每个节点提一个问题,通过判断,将数据分为几类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。
2. 有什么算法?
常用的几种决策树算法有ID3、C4.5、CART:
ID3:选择信息熵增益最大的feature作为node,实现对数据的归纳分类。
C4.5:是ID3的一个改进,比ID3准确率高且快,可以处理连续值和有缺失值的feature。
CART:使用基尼指数的划分准则,通过在每个步骤最大限度降低不纯洁度,CART能够处理孤立点以及能够对空缺值进行处理。
3. 数学原理?
ID3: Iterative Dichotomiser 3
下面这个数据集,可以同时被上面两颗树表示,结果是一样的,而我们更倾向于选择简单的树。
那么怎样做才能使得学习到的树是最简单的呢?
下面是 ID3( Iterative Dichotomiser 3 )的算法:
例如下面数据集,哪个是最好的 Attribute?
用熵Entropy来衡量:
E(S) 是数据集S的熵
i 指每个结果,即 No,Yes的概率
E越大意味着信息越混乱,我们的目标是要让E最小。
E在0-1之间,如果P+的概率在0.5, 此时E最大,这时候说明信息对我们没有明确的意义,对分类没有帮助。
但是我们不仅仅想要变量的E最小,还想要这棵树是 well organized。
所以用到 Gain:信息增益
意思是如果我后面要用这个变量的话,它的E会减少多少。
例如下面的数据集:
先计算四个feature的熵E,及其分支的熵,然后用Gain的公式计算信息增益。
再选择Gain最大的特征是 outlook。
第一层选择出来后,各个分支再继续选择下一层,计算Gain最大的,例如分支 sunny 的下一层节点是 humidity。
详细的计算步骤可以参考这篇博文。
C4.5
ID3有个局限是对于有大量数据的feature过于敏感,C4.5是它的一个改进,通过选择最大的信息增益率 gain ratio 来选择节点。而且它可以处理连续的和有缺失值的数据。
P’ (j/p) is the proportion of elements present at the position p, taking the value of j-th test.
例如 outlook 作为第一层节点后,它有 3 个分支,分别有 5,4,5 条数据,则 SplitInfo(5,4,5) = -5/14log(5,14)-4/14log(4,14)-5/14(5,14) ,其中 log(5,14) 即为 log2(5/14)。
下面是一个有连续值和缺失值的例子:
连续值
第一步计算 Gain,除了连续值的 humudity,其他步骤和前文一样。
要计算 humudity 的 Gain 的话,先把所有值升序排列:
{65, 70, 70, 70, 75, 78, 80, 80, 80, 85, 90, 90, 95, 96}
然后把重复的去掉:
{65, 70, 75, 78, 80, 85, 90, 95, 96}
如下图所示,按区间计算 Gain,然后选择最大的 Gain (S, Humidity) = 0.102
因为 Gain(S, Outlook) = 0 .246,所以root还是outlook:
缺失值
处理有缺失值的数据时候,用下图的公式:
例如 D12 是不知道的。
计算全集和 outlook 的 info,
其中几个分支的熵如下,再计算出 outlook 的 Gain:
比较一下 ID3 和 C4.5 的准确率和时间:
accuracy :
execution time:
4. 编码实现算法?
代码可以看《机器学习实战》这本书和这篇博客。
接下来以 C4.5 的代码为例:
** 1. 定义数据:**
def createDataSet():
dataSet = [[0, 0, 0, 0, 'N'],
[0, 0, 0, 1, 'N'],
[1, 0, 0, 0, 'Y'],
[2, 1, 0, 0, 'Y'],
[2, 2, 1, 0, 'Y'],
[2, 2, 1, 1, 'N'],
[1, 2, 1, 1, 'Y']]
labels = ['outlook', 'temperature', 'humidity', 'windy']
return dataSet, labels
** 2. 计算熵:**
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1 # 数每一类各多少个, {'Y': 4, 'N': 3}
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
shannonEnt -= prob * log(prob, 2)
return shannonEnt
** 3. 选择最大的gain ratio对应的feature:**
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1 #feature个数
baseEntropy = calcShannonEnt(dataSet) #整个dataset的熵
bestInfoGainRatio = 0.0
bestFeature = -1
for i in range(numFeatures):
featList = [example[i] for example in dataSet] #每个feature的list
uniqueVals = set(featList) #每个list的唯一值集合
newEntropy = 0.0
splitInfo = 0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value) #每个唯一值对应的剩余feature的组成子集
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
splitInfo += -prob * log(prob, 2)
infoGain = baseEntropy - newEntropy #这个feature的infoGain
if (splitInfo == 0): # fix the overflow bug
continue
infoGainRatio = infoGain / splitInfo #这个feature的infoGainRatio
if (infoGainRatio > bestInfoGainRatio): #选择最大的gain ratio
bestInfoGainRatio = infoGainRatio
bestFeature = i #选择最大的gain ratio对应的feature
return bestFeature
** 4. 划分数据,为下一层计算准备: **
def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value: #只看当第i列的值=value时的item
reduceFeatVec = featVec[:axis] #featVec的第i列给除去
reduceFeatVec.extend(featVec[axis+1:])
retDataSet.append(reduceFeatVec)
return retDataSet
** 5. 多重字典构建树:**
def createTree(dataSet, labels):
classList = [example[-1] for example in dataSet] # ['N', 'N', 'Y', 'Y', 'Y', 'N', 'Y']
if classList.count(classList[0]) == len(classList):
# classList所有元素都相等,即类别完全相同,停止划分
return classList[0] #splitDataSet(dataSet, 0, 0)此时全是N,返回N
if len(dataSet[0]) == 1: #[0, 0, 0, 0, 'N']
# 遍历完所有特征时返回出现次数最多的
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet) #0-> 2
# 选择最大的gain ratio对应的feature
bestFeatLabel = labels[bestFeat] #outlook -> windy
myTree = {bestFeatLabel:{}}
#多重字典构建树{'outlook': {0: 'N'
del(labels[bestFeat]) #['temperature', 'humidity', 'windy'] -> ['temperature', 'humidity']
featValues = [example[bestFeat] for example in dataSet] #[0, 0, 1, 2, 2, 2, 1]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:] #['temperature', 'humidity', 'windy']
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
# 划分数据,为下一层计算准备
return myTree
** 6. 可视化决策树的结果: **
dataSet, labels = createDataSet()
labels_tmp = labels[:]
desicionTree = createTree(dataSet, labels_tmp)
treePlotter.createPlot(desicionTree)
我是 不会停的蜗牛 Alice
85后全职主妇
喜欢人工智能,行动派
创造力,思考力,学习力提升修炼进行中
欢迎您的喜欢,关注和评论!