竟然已经具有 Python 相关的基础内容了,那我们就直接进阶吧!
1.NumPy,Pandas 及其他基础工具模块的熟练使用。
2. 数学基础能力。
深度学习是需要具白一定数据能力的,不是单纯的学习编程语言就可以明白的。至少需要掌握线性代数、微积分、概率论、控制论、信息论、优化理论、动力学分析。
数学虽然难度很大,但是我们的前提是学好。所以这个门槛是必修要踏过去的。基础打好之后,后面的学习会相对来说容易很多。
3.深度学习理论。
很多人会认为理论知识很枯燥,但是缺乏理论,我们就会成为单纯的调包调参一线民工。要学好深度学习,就必须要掌握人工神经网络涉及到的知识点和理论体系,能够使用 Python 构建并训练人工神经网络。
这部分内容推荐选择Ian Goodfellow 的《Deep Learning》,不过这本书需要有一定数学基础阅读。不然会很痛苦。
4.深度学习案例练习。
学习再多的理论,如果不动手练习。都没有太多的价值。需要能够独立或者跟随完成一些实际案例的练习,案例应该从简单到复杂,循序渐进的练习。比如以下:
如果想要快速的系统入门深度学习,可以了解下实验楼的楼+ 内容。通过 6 周时间使用 Python 语言进行实战,最终期望学员熟悉人工神经网络原理、能动手实现部分核心算法。掌握常用深度神经网络结构,并学会使用 TensorFlow 和 PyTorch 两大深度学习框架进行实践。此外,对涉及到的模型训练、评估、推理、部署充分了解,达到深度学习初级工程师的水平。楼+之深度学习实战www.shiyanlou.com