锵锵锵!终于到了收官的时候,是的,没有看错,我们终于刷完了《闭关修炼》!今天的内容是统计、估计与检验,对应闭关修炼第35和36讲,一共有10个题,是又一个大题出题点,大家要小心,首先庆祝一下我们的阶段性成功,首先感谢各位的一路陪伴,这个专题,作为本公众号的入门作品接近尾声了,直至今天本公众号头像是空白,文章结构和格式也不规范,限于对知识的理解深度,对题目的分析也还不够完善,感谢大家的包容,以后我会渐渐改进的,咱们下周开始我们将进入崭新的时期——奋力刷题!
统计量及其分布【1】
本题由T的表达式看出T属于t分布,因为T的均值为0,T的概率密度函数关于0对称,然后根据概率的和为1以及概率密度函数对称性直接算出本题要求的P=0.5-0.2=0.3,选(B)。
自解:
【2】
本题由表达式可以判断出Y属于F分布。yα为上α分位点,然后根据F分布的性质可以做出选择。
自解(计算过程):
【3】
本题考查F分布的相关性质,将相关公式变形就能很快地求出正确答案。
自解:
【4】
本题考四大分布中的卡方分布的相关性质。可以用选择题的特殊技巧解题,X服从标准正态,则X的线性组合也服从标准正态,n为平方项的个数,因此只需要用眼睛看a,b是。否为0就能判断n是1或者2了。本题没有其他限定a和b的条件,所以n可以为1(a和b中有0)也可以为2(a和b均不为0),选C,没必要像答案那样烦琐。
参考答案(复杂,不推荐):
【5】
本题考查统计量(独立同分布的正态总体),其中第一问涉及到了估计(下一节的知识),但本质上都是求统计量的问题,解决此题要牢记正态总体的相关结论,再按部就班做计算(疯狂套公式)。第一问要求EY,首先要看出表达式在表达什么,可以发现Y的表达式和样本方差的公式很相似然后利用样本方差的相关公式就可以求出EY了。第二问把均值为0代入第一问中的分布中,可以依据这个求出X的样本均值的分布律,之后利用正态分布的平方是卡方分布的原则和卡方分布的期望、方差公式可以解题。
自解:
【6】
本题考的是判断统计量服从的分布,题干中要求的统计量可以变形为多个独立同分布的随机变量之和,所以先求每个随机变量Y的分布再求和,具体计算后发现Y的概率密度和题目中自由度为2的Z的卡方分布概率密度相同,再由卡方分布的可加性得出本题选B。
自解:
参数估计与假设检验【1】
本题考查矩估计和最大似然估计,第一问还涉及了一维随机变量函数的分布的知识。第一问使用在概率论中学到的方法可以写出来,难度不大。第二问求矩估计就是要假设样本均值与分布的均值相等并列式,得出的相应参数的解就是矩估计量。第三问依据概率密度写出似然函数(取对数)最后用求导得0的方法就能得出最大似然估计量了。
自解:
【2】
本题第一问考的也是矩估计和最大似然估计。矩估计使用期望等于均值列式即可,最大似然估计写出似然函数后求导即可,不过由于似然函数是常数,所以本题求最大似然估计使用定义法,和课上讲的方法一样。第二问检验是否无偏本质就是检验估计值的期望与均值是否相等,列式计算即可,还要用到一些最大最小值的分布函数相关知识。
自解(第二问写不下了,就直接拍标准答案了,也挺清楚的):
【3】
本题考的又是求矩估计和最大似然估计。矩估计使用期望等于均值列式即可,最大似然估计写出似然函数后求导即可。和前两题比起来,特色是本题因为是伯努利重复实验,所以在求X期望时会用到级数求和的知识。
自解:
【4】
本题考查假设检验的基本知识。因为已知了分布的方差和均值,所以用标准正态分布来进行检验。又因为只要求判断μ是否大于μ0(假设μ小于等于μ0单边检验),所以排除BD,最后套用置信区间可以选出C。