transformer中attention计算方式_【NLP】Transformer模型原理详解

5032775bed01a6bceb3a65775913ab4f.png

大家好,我是在算法前沿旋转跳跃的焦燥女青年rumor。

近期前沿(2020年10月)

  • pQRNN:谷歌最新轻量级文本分类模型
  • Cross-Thought:微软为巨向量打造的最新预训练任务

自Attention机制提出后,加入attention的Seq2seq模型在各个任务上都有了提升,所以现在的seq2seq模型指的都是结合RNN和attention的模型。之后google又提出了解决Seq2Seq问题的Transformer模型,用全attention的结构代替了lstm,在翻译任务上取得了更好的成绩。本文主要介绍《Attention is all you need》这篇文章,自己在最初阅读的时候还是有些不懂,希望可以在自己的解读下让大家更快地理解这个模型^ ^

Attention和Transformer原理还不熟悉的可以看:

  • 【NLP】Transformer模型原理详解
  • 【NLP】Attention原理详解

1. 模型结构

模型结构如下图:

971a85c01c6e141993f07254664802ba.png

和大多数seq2seq模型一样,transformer的结构也是由encoder和decoder组成。

1.1 Encoder

Encoder由N=6个相同的layer组成,layer指的就是上图左侧的单元,最左边有个“Nx”,这里是x6个。每个Layer由两个sub-layer组成,分别是multi-head self-attention mechanism和fully connected feed-forward network。其中每个sub-layer都加了residual connection和normalisation,因此可以将sub-layer的输出表示为:

接下来按顺序解释一下这两个sub-layer:

  • Multi-head self-attention

熟悉attention原理的童鞋都知道,attention可由以下形式表示:

multi-head attention则是通过h个不同的线性变换对Q,K,V进行投影,最后将不同的attention结果拼接起来:

self-attention则是取Q,K,V相同。

另外,文章中attention的计算采用了scaled dot-product,即:

作者同样提到了另一种复杂度相似但计算方法additive attention,在

很小的时候和dot-product结果相似,
大的时候,如果不进行缩放则表现更好,但dot-product的计算速度更快,进行缩放后可减少影响(由于softmax使梯度过小,具体可见论文中的引用)。
  • Position-wise feed-forward networks

这层主要是提供非线性变换。Attention输出的维度是[bsz*seq_len, num_heads*head_size],第二个sub-layer是个全连接层,之所以是position-wise是因为过线性层时每个位置i的变换参数是一样的。

1.2 Decoder

Decoder和Encoder的结构差不多,但是多了一个attention的sub-layer,这里先明确一下decoder的输入输出和解码过程:

  • 输出:对应i位置的输出词的概率分布
  • 输入:encoder的输出 & 对应i-1位置decoder的输出。所以中间的attention不是self-attention,它的K,V来自encoder,Q来自上一位置decoder的输出
  • 解码:这里要特别注意一下,编码可以并行计算,一次性全部encoding出来,但解码不是一次把所有序列解出来的,而是像rnn一样一个一个解出来的,因为要用上一个位置的输入当作attention的query

明确了解码过程之后最上面的图就很好懂了,这里主要的不同就是新加的另外要说一下新加的attention多加了一个mask,因为训练时的output都是ground truth,这样可以确保预测第i个位置时不会接触到未来的信息。

加了mask的attention原理如图(另附multi-head attention):

7e53fdd956ad8d3314a36289e5f8bd7f.png

1.3 Positional Encoding

除了主要的Encoder和Decoder,还有数据预处理的部分。Transformer抛弃了RNN,而RNN最大的优点就是在时间序列上对数据的抽象,所以文章中作者提出两种Positional Encoding的方法,将encoding后的数据与embedding数据求和,加入了相对位置信息。

这里作者提到了两种方法:

  1. 用不同频率的sine和cosine函数直接计算
  2. 学习出一份positional embedding(参考文献)

经过实验发现两者的结果一样,所以最后选择了第一种方法,公式如下:

作者提到,方法1的好处有两点:

  1. 任意位置的
    都可以被
    的线性函数表示,三角函数特性复习下:

2. 如果是学习到的positional embedding,(个人认为,没看论文)会像词向量一样受限于词典大小。也就是只能学习到“位置2对应的向量是(1,1,1,2)”这样的表示。所以用三角公式明显不受序列长度的限制,也就是可以对 比所遇到序列的更长的序列 进行表示。

2. 优点

作者主要讲了以下三点:

d0f4c3c6ff99580f8ccb443331b5b2db.png
  1. Total computational complexity per layer (每层计算复杂度)

2. Amount of computation that can be parallelized, as mesured by the minimum number of sequential operations required

作者用最小的序列化运算来测量可以被并行化的计算。也就是说对于某个序列

,self-attention可以直接计算
的点乘结果,而rnn就必须按照顺序从
计算到

3. Path length between long-range dependencies in the network

这里Path length指的是要计算一个序列长度为n的信息要经过的路径长度。cnn需要增加卷积层数来扩大视野,rnn需要从1到n逐个进行计算,而self-attention只需要一步矩阵计算就可以。所以也可以看出,self-attention可以比rnn更好地解决长时依赖问题。当然如果计算量太大,比如序列长度n>序列维度d这种情况,也可以用窗口限制self-attention的计算数量

4. 另外,从作者在附录中给出的栗子可以看出,self-attention模型更可解释,attention结果的分布表明了该模型学习到了一些语法和语义信息

1ad702d8d7a870ecde48bb2ebae49c26.png

3. 缺点

缺点在原文中没有提到,是后来在Universal Transformers中指出的,在这里加一下吧,主要是两点:

  1. 实践上:有些rnn轻易可以解决的问题transformer没做到,比如复制string,或者推理时碰到的sequence长度比训练时更长(因为碰到了没见过的position embedding)
  2. 理论上:transformers非computationally universal(图灵完备),(我认为)因为无法实现“while”循环

4. 总结

Transformer是第一个用纯attention搭建的模型,不仅计算速度更快,在翻译任务上获得了更好的结果,也为后续的BERT模型做了铺垫。

Transformer是BERT的核心模块,在BERT推出后,涌现了越来越多的研究成果,这里为大家做了总结,每个节点里都有更多的笔记,可以加V「leerumorrr」获取xmind版,顺便交个朋友 (๑•̀ㅂ•́) ✧

6ba5521578fa805974842dbccda4962e.png

相关阅读:

  • 预训练改进
    • Google XLNET:自回归+上下文表示
    • ALBERT:权重共享的BERT
    • ELECTRA:对抗式BERT训练
    • NLP中的对抗训练
  • BERT+生成式
    • OpenAI GPT2原理解读
    • BERT生成式之MASS解读
    • BERT生成式之UNILM解读
    • Google T5:超大型生成模型
  • BERT加速
    • 模型蒸馏原理
    • LayerDrop:BERT结构剪枝
    • 模型训练加速:梯度累加/混合精度/分布式训练等
    • FastBERT:又快又稳的推理提速方法
    • DynaBERT:动态伸缩训练
  • 用于特定任务的模型
    • 微软MT-DNN原理解读
    • Deformer:文本匹配加速

参考资料:

  1. Attention is all you need
  2. 知乎:谷歌论文《Attention is all you need》里Transformer模型的一些疑问?
  3. Stackoverflow: positional embedding
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值