- 博客(524)
- 资源 (13)
- 收藏
- 关注

原创 PyTorch填坑攻略
RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 0RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 0. Got 337 and 336 in dimension 3 ...
2020-04-14 19:41:14
1470

转载 PyTorch Cookbook(常用代码段整理合集)
本文代码基于PyTorch 1.0版本,需要用到以下包import collectionsimport osimport shutilimport tqdmimport numpy as npimport PIL.Imageimport torchimport torchvision1 基础配置1-1 检查PyTorch版本torch.__version__ ...
2019-04-27 15:58:29
2465
4

原创 Linux常见命令汇总(累积中。。。)
Linux下统计当前文件夹下的文件个数、目录个数统计当前文件夹下文件的个数,包括子文件夹里的ls -lR|grep "^-"|wc -l统计文件夹下目录的个数,包括子文件夹里的ls -lR|grep "^d"|wc -l统计当前文件夹下文件的个数ls -l |grep "^-&quot
2018-12-06 11:08:08
1295
11

原创 本博客目录及版权申明
【C++ Primer 学习笔记】系列:第一部分 基本语言第二部分 容器和算法 【C++ Primer 学习笔记】: 容器和算法之【顺序容器】 【C++ Primer 学习笔记】: 容器和算法之【关联容器】 【C++ Primer 学习笔记】: 容器和算法之【泛型算法】第三部分 类和数据抽象第四部分 面向对象编程与泛型算法第五部分 高级主题【Java: 23种设计模式】系列 Java: 23
2015-11-25 17:37:30
1329
1

原创 凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法
[本文链接:http://www.cnblogs.com/breezedeus/p/3496819.html,转载请注明出处]最近开始对凸优化(convex optimization)开始感兴趣,接下来我会写一系列关于凸优化(convex optimization)的内容。本文主要对ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法做一
2015-05-22 17:27:34
56045
13
原创 深度学习论文: Task-Specific Context Decoupling for Object Detection及其PyTorch实现
目标检测还需要定位出图像中每个感兴趣目标所在的位置和类别信息,但是定位和分类两个子任务对特征上下文的偏好并不一致,其中,定位需要更多的边界感知特征来准确地回归边界框,而分类任务则需要更多的语义上下文信息。两者之间存在一种空间不对齐(spatial misalignment)的问题。通过实验,作者提出全连接头可能更适合分类任务,而卷积头则更适合定位任务,这是因为fc-head比conv-head具备更高的空间敏感性,具有更强的区分完整对象和部分对象的能力,但对于回归整个对象并不稳健。
2023-03-14 15:52:19
279
原创 深度学习论文: To Perceive or Not to Perceive: Lightweight Stacked Hourglass Network及其PyTorch实现
本文对堆叠的沙漏网络(Stacked Hourglass Network)进行了架构和非架构修改,以获得一个既准确且计算效率高的模型。
2023-03-13 20:54:31
28
原创 github: Personal access tokens
个人头像 --> Settings --> Developer settings —> Personal access tokens --> Generate new token。复制生成的 token信息。
2023-02-28 09:58:48
52
原创 深度学习论文: EdgeYOLO: An Edge-Real-Time Object Detector及其PyTorch实现
EdgeYOLO是一种具有良好精度并且能够在边缘设备上实时运行的目标检测器。设计了一种Anchor-Free目标检测器,该检测器可以在MS COCO2017数据集中实时运行在边缘设备上,准确率为50.6%AP;提出了一种更强大的数据增强方法,进一步确保了训练数据的数量和有效性;模型中使用了可重参化的结构,以减少推理时间;设计了一个损失函数,以提高小目标的精度。
2023-02-23 14:37:04
434
原创 centos: NVIDIA-SMI has failed because it couldn‘t communicate with the NVIDIA driver.
重启服务器之后就出现连接不上NVIDIA驱动的情况。查看之前安装 nvidia 驱动的版本号。有可能是 nouveau模块没有禁用。再输入nvidia-smi。
2023-02-10 16:04:45
72
原创 深度学习论文: YOLOv6 v3.0: A Full-Scale Reloading及其PyTorch实现
通过扩展的骨干网络(Backbone)和颈部(Head)设计,YOLOv6 3.0 最终实时实现了 YOLO 家族的 SOTA。
2023-02-01 15:26:52
541
原创 深度学习调参指南《Deep Learning Tuning Playbook》
这份指南的主要内容是调整超参数,也涉及深度学习训练的其他方面,例如 pipeline 实现和优化。指南假设机器学习问题是一个监督学习问题或自监督学习问题,但其中的一些规定也适用于其他类型的问题。
2023-01-31 16:49:38
704
原创 深度学习论文: Multi-modal Sensor Fusion for Auto Driving Perception: A Survey
单模态数据(图像或者点云)的感知存在固有的缺陷。例如,摄像机数据主要在前视低位捕获。在更复杂的场景中,物体可能被遮挡,给目标检测和语义分割带来严峻挑战。此外,由于机械结构的限制,激光雷达在不同距离上具有不同的分辨率,并且容易受到极端天气(如雾天和大雨)的影响。尽管两种模态的数据在单独使用时在各个领域都有优秀表现,但激光雷达和摄像机的互补性使得它们的结合可以在感知方面取得更好的性能。作者对关于自动驾驶中多模态传感器融合论文进行简要综述。
2023-01-29 17:24:40
484
原创 深度学习论文: IncepFormer: Efficient Inception Transformer with Pyramid Pooling for Semantic Segmentation
InceptFormer由两个主要部分组成:1)金字塔Inception Transformer编码器用于捕获粗粒度和细粒度特征;2)轻量级上采样Concat解码器合并多尺度特征并进行piexl级预测。
2022-12-12 17:46:29
219
原创 深度学习论文: RepGhost: A Hardware-Efficient Ghost Module via Re-parameterization及其PyTorch实现
RepGhostNet通过结构重参数机制实现特征复用,赋能GhostNet达成硬件友好方案。ImageNet与COCO基线任务验证了所提方案的有效性与高效性。
2022-12-05 11:19:07
572
原创 深度学习论文: Conv2Former: A Simple Transformer-Style ConvNet for Visual Recognition及其PyTorch实现
通过组合ConvNet与ViT的设计理念,本文利用卷积调制操作对自注意力进行了简化,进而构建了一种新的ConvNet架构Conv2Former。
2022-12-02 17:41:53
916
原创 深度学习论文: Efficient Multi-order Gated Aggregation Network及其PyTorch实现
MogaNet通过在空间和通道交互空间中利用两个专门设计的聚合模块,促进了跨多个复杂性的交互并将其情境化。轻量级的MogaNet-T通过在ImageNet-1K上进行精确的训练设置,以1.44G的FLOPs实现80.0%的top-1精度,超过ParC-Net-S 1.4%的精度,但节省了59%(2.04G)的FLOPs。
2022-11-25 10:07:32
293
原创 深度学习论文: MOAT: Alternating Mobile Convolution and Attention Brings Strong Vision Models及其PyTorch实现
MOAT 分析了MBConv和Transformer Block 的优缺点,将二者有效地合并到MOAT Block中。此外,通过简单地将全局注意力转换为窗口注意力,MOAT可以无缝应用于需要大分辨率输入的下游任务。由于 Mobile Convolution 可以有效地在像素之间交换局部信息(从而跨窗口),MOAT不需要额外的窗口移动机制。
2022-10-24 16:15:07
807
原创 深度学习论文: SegFormer:Simple and Efficient Design for Semantic Segmentation with Transformers及其PyTorch实现
SegFormer使用一种分层特征表示的方法,每个transformer层的输出特征尺寸逐层递减,通过这种方式捕获不同尺度的特征信息。并且舍弃了ViT中的position embedding操作,避免了测试图像与训练图像尺寸不同而导致模型性能下降的问题。在decoder部分采用简单的MLP结构,聚合transformer层不同尺度的特征,可以同时融合局部注意力和全局注意力。
2022-10-19 21:14:18
696
原创 Pycharm中Debug调试不小心关闭Console窗口
找到 C:\Users\xxx.PyCharm2019.3\config\options中runner.layout.xml文件。
2022-10-05 11:45:39
142
原创 深度学习论文: SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation及其PyTorch实现
1 采用强骨干网络作为编码器;2 多尺度信息交互;3 空域注意力;4 低计算复杂度。基于此,不同于已有Transformer方案,提出的SegNeXt对编码器模块采用传统卷积模块设计但引入了多尺度卷积注意力,对解码器模块采用了Hamberger(自注意力的一种替代方案)进一步提取全局上下文信息。提出的SegNeXt兼具性能和速度的优势;
2022-10-01 07:00:00
815
原创 深度学习论文: YOLOX-PAI: An Improved YOLOX, Stronger and Faster than YOLOv6及其PyTorch实现
针对YOLOX,加入诸多改进技巧的复现和探索,进一步提升了YOLOX的性能,在速度和精度上都比现阶段的40~50mAP 的SOTA的YOLOv6更胜一筹。
2022-09-23 10:38:09
295
原创 深度学习论文: YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications及其PyTorch实现
YOLOv6 支持检测模型训练、评估、预测以及模型量化、蒸馏等全链路开发流程,同时支持 GPU(TensorRT)、CPU(OPENVINO)、ARM(MNN、TNN、NCNN)等不同平台的部署,极大简化工程部署时的适配工作。
2022-09-21 20:06:01
797
原创 基于IV曲线数据的光伏故障智能诊断(PyTorch)
本文代码和数据地址: TimeSeries数据来自自有采集数据,分为正常和故障两个类别,其中 train:1398,val:350。加载数据类2 模型模型主要基于 shufflenet_v2改造,将Conv2d, BatchNorm2d, channel_shuffle2d 改为 Conv1d, BatchNorm1d, channel_shuffle1d,输入为 N * 2 * 100, 输出为 N * 2。3 训练训练代码:
2022-09-06 20:00:58
24
原创 NeuralProphet之八:NeuralProphet部署
新版本的neuralprophet/utils.py文件下实现了 save和load函数用于模型保存和加载。NeuralProphet之八:NeuralProphet部署。将模型存储到本地,并在需要的时候将其导入。
2022-08-30 11:16:54
706
3
原创 NeuralProphet之六:多元时间序列预测
NeuralProphet 通过滞后回归(Lagged Regressors)为时间序列预测目标加入其他协变量。NeuralProphet通过add_lagged_regressor注册协变量。NeuralProphet之六:多元时间序列预测。
2022-08-29 19:40:36
688
原创 时间序列论文: NeuralProphet: Explainable Forecasting at Scale
NeuralProphet是一个基于PyTorch实现的客户友好型时间序列预测工具,延续了2018年Facebook开源预测工具Prophet的主要功能,主要用于时序数据分析(个人使用体验:最好是具备显著时序特征的数据)。NeuralProphet是在一个完全模块化的架构中开发的,这使得它可以在未来增加额外组件,可扩展性很强。........................
2022-08-24 09:47:45
742
原创 NeuralProphet之七:NeuralProphet + Optuna
NeuralProphet之七:NeuralProphet + Optuna数据来自真实园区数据,训练集为2022年8月01日到2022年8月14日园区的耗电量,每隔5分钟采集一次;测试集为2022年8月15日到2022年8月21日园区的耗电量,每隔5分钟采集一次;要求:预测接下来1H的耗电量。导入库导入数据。...
2022-08-22 20:37:01
603
原创 NeuralProphet之二:季节性(Seasonality)
seasonality_mode="multiplicative"比seasonality_mode="additive"可能效果更好。seasonality_mode="multiplicative"预测。NeuralProphet之二:季节性(Seasonality)seasonality_mode="additive"预测。NeuralProphet中的季节性使用傅里叶项建模。是关于要模拟的季节成分。...
2022-08-19 20:23:22
610
原创 NeuralProphet之四:事件(Events)
NeuralProphet之四:事件(Events)在预测问题中,经常需要考虑反复出现的特殊事件。
2022-08-19 13:41:05
390
原创 NeuralProphet之五:多时序预测模型
NeuralProphet之四:多时序预测模型实际环境下,我们可能会遇到多个时序数据,比如同一小区的不同楼栋的用电量预测,虽然不同楼栋的用电量幅值差异较大,但是他们之间的数据周期性还是有些相似的,因此我们需要global model来处理多时序预测。还是以自带的美国的电力消耗数据(load_ercot_regions.csv)为例,首先加载数据数据预处理。.........
2022-08-18 19:40:37
850
2
原创 NeuralProphet官方示例二:日照辐射强度预测(Forecasting hourly solar irradiance)
代码来自:https://neuralprophet.com/html/energy_solar_pv.html使用90%的数据用来训练,10%的数据用来测试。加载库和数据。
2022-08-16 20:57:21
423
原创 NeuralProphet官方示例一:建筑物用电量预测(Building load forecasting)
代码来自:https://neuralprophet.com/html/energy_hospital_load.html数据集包含一整年的每小时观测值。使用前11个月的数据用来训练,留最后一个月用来评估。加载库和数据。
2022-08-16 20:47:38
870
原创 NeuralProphet之一:安装与使用
NeuralProphet模型集成了Prophet的所有优点,不仅具有不错的可解释性,还有优于Prophet的预测性能。梯度下降通过使用PyTorch作为后端进行优化。使用 AR-Net 对时间序列的自相关进行建模使用分离的前馈神经网络对滞后回归量进行建模。可配置的FFNN非线性深层。可调整为特定的预测范围(大于 1)。自定义损失和指标。.....................
2022-08-15 11:02:30
1285
原创 深度学习论文: Making Convolutional Networks Shift-Invariant Again及其PyTorch实现
深度学习论文: Making Convolutional Networks Shift-Invariant Again及其PyTorch实现Making Convolutional Networks Shift-Invariant AgainPDF: https://arxiv.org/pdf/1904.11486.pdfPyTorch代码: https://github.com/shanglianlm0525/CvPytorchPyTorch代码: https://github.com/shang
2022-08-09 14:27:27
141
原创 深度学习论文: ObjectBox: From Centers to Boxes for Anchor-Free Object Detection及其PyTorch实现
ObjectBox仅使用目标中心位置作为正样本,并在不同的特征级别平等对待所有目标,而不管物体的大小或形状。将新的回归目标定义为从中心单元位置的2个角到边界框4个边的距离提出了一种定制的 IoU 损失来处理不同大小尺度变化的框。...
2022-08-02 19:07:13
482
2
CUDA C编程权威指南
2019-05-02
CUDA并行程序设计 GPU编程指南
2019-05-02
linux下安装Anaconda3+pytorch+tensorboardX依赖包
2019-03-23
Quartz 示例代码
2017-05-02
Java反射机制代码
2017-05-01
java反射示例代码
2017-05-01
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人