自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

mingo_敏

计算机视觉和模式识别,深度学习

  • 博客(422)
  • 资源 (14)
  • 论坛 (1)
  • 收藏
  • 关注

原创 PyTorch填坑攻略

RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 0RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 0. Got 337 and 336 in dimension 3 ...

2020-04-14 19:41:14 753

转载 PyTorch Cookbook(常用代码段整理合集)

本文代码基于PyTorch 1.0版本,需要用到以下包import collectionsimport osimport shutilimport tqdmimport numpy as npimport PIL.Imageimport torchimport torchvision1 基础配置1-1 检查PyTorch版本torch.__version__ ...

2019-04-27 15:58:29 2133 4

原创 Linux常见命令汇总(累积中。。。)

Linux下统计当前文件夹下的文件个数、目录个数统计当前文件夹下文件的个数,包括子文件夹里的ls -lR|grep "^-"|wc -l统计文件夹下目录的个数,包括子文件夹里的ls -lR|grep "^d"|wc -l统计当前文件夹下文件的个数ls -l |grep "^-&quot

2018-12-06 11:08:08 1029 11

原创 本博客目录及版权申明

【C++ Primer 学习笔记】系列:第一部分 基本语言第二部分 容器和算法 【C++ Primer 学习笔记】: 容器和算法之【顺序容器】 【C++ Primer 学习笔记】: 容器和算法之【关联容器】 【C++ Primer 学习笔记】: 容器和算法之【泛型算法】第三部分 类和数据抽象第四部分 面向对象编程与泛型算法第五部分 高级主题【Java: 23种设计模式】系列 Java: 23

2015-11-25 17:37:30 1235 1

原创 凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法

[本文链接:http://www.cnblogs.com/breezedeus/p/3496819.html,转载请注明出处]最近开始对凸优化(convex optimization)开始感兴趣,接下来我会写一系列关于凸优化(convex optimization)的内容。本文主要对ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法做一

2015-05-22 17:27:34 48034 13

原创 目标检测中的Classificition Loss

Classificition LossPyTorch: https://github.com/shanglianlm0525/CvPytorch目标检测任务的损失函数由Classificition Loss和Bounding Box Regeression Loss两部分构成。本文介绍目标检测任务中近几年来Classificition Loss的演变过程参考资料:1 一文看尽深度学习中的15种损失函数...

2021-06-07 16:58:42 36

转载 目标检测中bbox回归中class-agnostic和class-specific的区别在哪?

目标检测中bbox回归中class-agnostic和class-specific的区别在哪?class-specific 方式,很多地方也称作class-aware的检测,是早期Faster RCNN等众多算法采用的方式。它利用每一个RoI特征回归出所有类别的bbox坐标,最后根据classification 结果索引到对应类别的box输出。这种方式对于ms coco有80类前景的数据集来说,并不算效率高的做法。class-agnostic 方式只回归2类bounding box,即前景和背景

2021-05-31 08:19:26 24

原创 PyTorch中的Hook函数

Hook 函数是在不改变主体的情况下,实现额外功能。由于 PyTorch 是基于动态图实现的,因此在一次迭代运算结束后,一些中间变量如非叶子节点的梯度和特征图,会被释放掉。在这种情况下想要提取和记录这些中间变量,就需要使用 Hook 函数。PyTorch 提供了 4 种 Hook 函数。1 torch.Tensor.register_hook(hook)**功能:**注册一个反向传播 hook 函数,仅输入一个参数,为张量的梯度。hook函数:hook(grad)参数:grad:张量的梯度

2021-05-26 14:59:15 15

原创 深度学习论文: Activate or Not: Learning Customized Activation及其PyTorch实现

深度学习论文: Activate or Not: Learning Customized Activation及其PyTorch实现Activate or Not: Learning Customized ActivationPDF: https://arxiv.org/pdf/2009.04759.pdfPyTorch代码:https://github.com/shanglianlm0525/CvPytorchPyTorch代码:https://github.com/shanglianlm0525

2021-05-18 16:29:59 62

原创 目标检测中的Bounding Box Regression Loss

Bounding Box Regression LossPyTorch: https://github.com/shanglianlm0525/CvPytorch目标检测任务的损失函数由Classificition Loss和Bounding Box Regeression Loss两部分构成。本文介绍目标检测任务中近几年来Bounding Box Regression Loss Function的演变过程Smooth L1 Loss优点:缺点:Focal Loss优点:缺点:Io

2021-05-10 21:57:06 31

原创 PyTorch代码优化技巧

1 直接在GPUs上构建张量很多人都是这样在GPUs上创建张量的t = tensor.rand(2,2).cuda()然而,这首先创建CPU张量,然后将其转移到GPU……这真的很慢。相反,直接在想要的设备上创建张量。t = tensor.rand(2,2, device=torch.device('cuda:0'))2 使用DistributedDataParallel不要使用DataParallelPyTorch有两个主要的模式用于在多 GPUs训练。第一种是DataParallel,它

2021-05-08 10:58:43 72 2

原创 Numba加速python代码

Numba 读取装饰函数的 Python 字节码,并将其与有关函数输入参数类型的信息结合起来,分析和优化代码,最后使用编译器库(LLVM)针对你的 CPU 生成量身定制的机器代码。每次调用函数时,都会使用此编译版本,来达到加速的目的。import mathimport timefrom numba import njit, prange# @njit 相当于 @jit(nopython=True)@njitdef is_prime(num): if num == 2: .

2021-04-20 09:56:54 58

原创 修改yolov5的输入图像尺寸为指定尺寸

yolov5支持两种训练方式:加入指定输入img-size为640square (w==h)如 输入为 [b, c, 640, 640], 可以使用mosic数据增强方式增强图像rect(scale):如 输入为 [b, c, 640, 512], 其中512为短边放缩以后的尺寸(补充到32的倍数)但是不支持mosic数据增强方式但是有的时候在实际项目使用中,可能会涉及到需要同时指定输入图像的长和宽,因为对yolov5代码做一些修改以适应于项目需求。修改后的代码如下:...

2021-04-12 15:00:34 802

原创 yolov5中关闭wandb

在 utils/wandb_logging/wandb_utils.pytry: import wandb from wandb import init, finishexcept ImportError: wandb = None后面添加wandb = None就可以关掉讨人厌的wandb了,哈哈哈哈哈哈哈哈!

2021-04-01 18:48:27 620 2

原创 深度学习论文: Refining activation downsampling with SoftPool及其PyTorch实现

深度学习论文: Refining activation downsampling with SoftPool及其PyTorch实现Refining activation downsampling with SoftPoolPDF: https://arxiv.org/pdf/2101.00440v3.pdfPyTorch代码:https://github.com/shanglianlm0525/CvPytorchPyTorch代码:https://github.com/shanglianlm0525

2021-03-26 14:54:12 78

原创 NVIDIA DALI从入门到放弃之二:入门示例

NVIDIA DALI从入门到放弃之一:概述NVIDIA DALI从入门到放弃之二:入门示例NVIDIA DALI从入门到放弃之三:Data LoadingNVIDIA DALI从入门到放弃之四:Multiple GPUNVIDIA DALI从入门到放弃之五:Image ProcessingNVIDIA DALI从入门到放弃之六:Geometric TransformsNVIDIA DALI从入门到放弃之七:Sequence ProcessingNVIDIA DALI从入门到放弃之八:PyTo

2021-03-25 22:38:32 167

原创 NVIDIA DALI从入门到放弃之一:概述

NVIDIA DALI从入门到放弃之一:概述NVIDIA DALI从入门到放弃之二:入门示例NVIDIA DALI从入门到放弃之三:Data LoadingNVIDIA DALI从入门到放弃之四:Multiple GPUNVIDIA DALI从入门到放弃之五:Image ProcessingNVIDIA DALI从入门到放弃之六:Geometric TransformsNVIDIA DALI从入门到放弃之七:Sequence ProcessingNVIDIA DALI从入门到放弃之八:PyTo

2021-03-25 22:33:42 190

原创 NVIDIA DALI从入门到放弃之六:Geometric Transforms

NVIDIA DALI从入门到放弃之一:概述NVIDIA DALI从入门到放弃之二:入门示例NVIDIA DALI从入门到放弃之三:Data LoadingNVIDIA DALI从入门到放弃之四:Multiple GPUNVIDIA DALI从入门到放弃之五:Image ProcessingNVIDIA DALI从入门到放弃之六:Geometric Transforms1 Cataloguerotation - rotate by given angle (in degrees) aroun

2021-03-24 22:21:13 90

原创 python设计模式之工厂模式(Factory Pattern)

工厂模式的本质就是用工厂方法代替new操作创建一种实例化对象的方式.import randomfrom typing import Typeclass Pet: def __init__(self, name: str) -> None: self.name = name def speak(self) -> None: raise NotImplementedError def __str__(self) -> str

2021-03-24 09:38:37 98

原创 NVIDIA DALI从入门到放弃之五:Image Processing

NVIDIA DALI从入门到放弃之一:概述NVIDIA DALI从入门到放弃之二:入门示例NVIDIA DALI从入门到放弃之三:Data LoadingNVIDIA DALI从入门到放弃之四:Multiple GPUNVIDIA DALI从入门到放弃之五:Image Processing1 Image Decoder-1 CPU-2 GPUColor Space Conversion-1 CPU-2 GPUBrightnessContrast-1 CPU-2 GPUHSV-

2021-03-20 16:37:08 117

原创 NVIDIA DALI从入门到放弃之四:Multiple GPU

NVIDIA DALI从入门到放弃之一:概述NVIDIA DALI从入门到放弃之二:入门示例NVIDIA DALI从入门到放弃之三:Data LoadingNVIDIA DALI从入门到放弃之四:表达式和算术运算符1 支持的操作符(Supported Operators)一元运算符: +, -;二元运算符: +, -, *, /, //;比较运算符: ==, !=, <, <=, >, >=;位二进制运算符: &, |, ^.2 类型提升(Type Pr

2021-03-19 18:02:54 112

原创 NVIDIA DALI从入门到放弃之三:Data Loading

NVIDIA DALI从入门到放弃之一:概述NVIDIA DALI从入门到放弃之二:入门示例NVIDIA DALI从入门到放弃之三:Data LoadingNVIDIA DALI从入门到放弃之三:Data Loading图片文件目录结构如下:.├── ants│ ├── 10308379_1b6c72e180.jpg│ ├── 11381045_b352a47d8c.jpg│ ├── 119785936_dd428e40c3.jpg│ ├── 17081114_79b9

2021-03-19 15:35:21 158

原创 深度学习论文: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks及其PyTorch实现

深度学习论文: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks及其PyTorch实现PDF: https://arxiv.org/pdf/1905.11946.pdfPyTorch: https://github.com/shanglianlm0525/PyTorch-NetworksPyTorch: https://github.com/shanglianlm0525/CvPytorch1 概述2

2021-03-09 16:53:12 97

原创 深度学习论文: RepVGG: Making VGG-style ConvNets Great Again及其PyTorch实现

深度学习论文: RepVGG: Making VGG-style ConvNets Great Again及其PyTorch实现PDF: https://arxiv.org/pdf/2101.03697.pdfPyTorch: https://github.com/shanglianlm0525/PyTorch-NetworksPyTorch: https://github.com/shanglianlm0525/CvPytorch1 概述2 RepVGG2-1 VGG样式的网络优点2-2 a

2021-02-25 11:08:57 129

原创 ubuntu下常见问题汇总(累积中。。。)

1 无法获得锁 /var/lib/dpkg/lock - open (11: 资源暂时不可用)无法获得锁 /var/lib/dpkg/lock - open (11: 资源暂时不可用)无法锁定管理目录(/var/lib/dpkg/),是否有其他进程正占用它?apt-get进程没有正常结束或者被占用查看占用进程ps -A |grep apt 杀掉进程sudo kill -9 123456删除锁文件sudo rm /var/cache/apt/archives/locksudo rm

2021-02-19 15:43:50 51

原创 深度学习论文: Rethinking Convolutional Feature Extraction for Small Object Detection及其PyTorch实现

深度学习论文: Rethinking Convolutional Feature Extraction for Small Object Detection及其PyTorch实现PDF: https://bmvc2019.org/wp-content/uploads/papers/1057-paper.pdfPyTorch: https://github.com/shanglianlm0525/PyTorch-NetworksPyTorch: https://github.com/shanglianl

2021-02-09 10:47:24 73

原创 深度学习论文: Generalized Focal Loss V2及其PyTorch实现

深度学习论文: Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection及其PyTorch实现PDF: https://arxiv.org/pdf/2011.12885.pdfPyTorch: https://github.com/shanglianlm0525/PyTorch-NetworksPyTorch: https://github.com/sh

2021-02-01 12:48:17 314 1

原创 深度学习论文: Generalized Focal Loss V1及其PyTorch实现

Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object DetectionPDF: https://arxiv.org/pdf/2006.04388.pdfPyTorch: https://github.com/shanglianlm0525/PyTorch-NetworksPyTorch: https://github.com/shanglianlm0525/CvPytorc

2021-02-01 12:47:56 256

原创 Stochastic Weight Averaging

参考资料1 Stochastic Weight Averaging blog2 Stochastic Weight Averaging in PyTorch3 Stochastic Weight Averaging docs4 SWA Object Detection5 Averaging Weights Leads to Wider Optima and Better Generalization

2021-02-01 12:47:25 178

原创 PyTorch 加速数据读取, 提高 GPU 利用率

1 prefetch_generator使用 prefetch_generator 库在后台加载下一 batch 的数据。需要安装 prefetch_generator 库pip install prefetch_generator原本 PyTorch 默认的 DataLoader 会创建一些 worker 线程来预读取新的数据,但是除非这些线程的数据全部都被清空,这些线程才会读下一批数据。使用 prefetch_generator,我们可以保证线程不会等待,每个线程都总有至少一个数据在加载。

2021-02-01 12:47:03 1077 1

原创 深度学习论文: Confluence: A Robust Non-IoU Alternative to NMS in Object Detection及其PyTorch实现

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object DetectionPDF: https://arxiv.org/pdf/2012.00257.pdfPyTorch: https://github.com/shanglianlm0525/PyTorch-NetworksPyTorch: https://github.com/shanglianlm0525/CvPytorch1 概述2 NMS的演

2021-01-04 09:38:21 456 4

原创 深度学习论文: End-to-End Object Detection with Fully Convolutional Network及其PyTorch实现

深度学习论文: End-to-End Object Detection with Fully Convolutional Network及其PyTorch实现End-to-End Object Detection with Fully Convolutional NetworkPDF: https://arxiv.org/pdf/2012.03544.pdfPyTorch代码:https://github.com/shanglianlm0525/PyTorch-Networks...

2021-01-04 09:37:52 113

原创 深度学习论文: BAM: Bottleneck Attention Module及其PyTorch实现

BAM: Bottleneck Attention ModulePDF: https://hangzhang.org/files/resnest.pdfPyTorch: https://github.com/shanglianlm0525/PyTorch-NetworksPyTorch: https://github.com/shanglianlm0525/CvPytorch

2021-01-04 09:37:41 380

原创 注意力机制论文:FcaNet: Frequency Channel Attention Networks及其PyTorch实现

FcaNet: Frequency Channel Attention NetworksPDF: https://arxiv.org/pdf/2012.11879.pdfPyTorch代码: https://github.com/shanglianlm0525/PyTorch-NetworksPyTorch代码: https://github.com/shanglianlm0525/CvPytorch1 概述2 Frequency Channel AttentionPyTorch代码:

2021-01-04 09:37:25 949 2

原创 深度学习论文: OneNet: End-to-End One-Stage Object Detection by Classificaion Cost及其PyTorch实现

深度学习论文: OneNet: End-to-End One-Stage Object Detection by Classificaion Cost及其PyTorch实现OneNet: End-to-End One-Stage Object Detection by Classificaion CostPDF: https://peizesun.github.io/OneNet.pdf1 概述OneNet将classification cost加入到location cost中,可以去除后续的N

2020-12-07 18:57:35 703 1

原创 LabelingPixelFromImage

#include “common.h”#define WIDTH 160#define HEIGHT 160int g_Patten[(WIDTH * HEIGHT + 1) / 2 + 1];//Find the root of the tree of node iint findRoot(const int *P, int i){int root = i;while (P[ro...

2020-12-03 13:03:46 99

原创 python设计模式之装饰器模式(Decorator Pattern)

装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其结构。这种类型的设计模式属于结构型模式,它是作为现有的类的一个包装。代码来自:https://github.com/shanglianlm0525/CvPytorchdef logger_info(f): @functools.wraps(f) # @wraps(f) def info(*args, **kwargs): logger.info('Begin to i

2020-12-03 10:26:23 204 1

原创 yolov5中的Rectangular training和Rectangular inference

Rectangular trainingRectangular inferenceSquare InferenceRectangular Inference参考:https://github.com/ultralytics/yolov3/issues/232

2020-12-01 10:41:57 885 2

原创 PC端NCNN部署

1 NCNN部署1.在电脑端使用ncnn实现分类(alexnet)s1,安装g++,cmake,protobuf,opencvs2,对源码进行编译git clone https://github.com/Tencent/ncnn$ cd <ncnn-root-dir>$ mkdir -p build$ cd build$ cmake ..$ make -j4s3,...

2020-12-01 09:34:14 535

原创 python设计模式之适配器模式(Adapter Pattern)

适配器模式(Adapter Pattern):将一个类的接口转换成为客户希望的另外一个接口.Adapter Pattern使得原本由于接口不兼容而不能一起工作的那些类可以一起工作.这里performanceLogger 需要根据不同的需求调用ClassificationEvaluator,SegmentationEvaluator,VOCEvaluator或者COCOEvaluator类的实现其实也可以使用工厂模式来实现。代码来自:https://github.com/shanglianlm0525

2020-12-01 09:32:17 200

CUDA专家手册 [GPU编程权威指南]

《CUDA专家手册:GPU编程权威指南》英伟达公司CUDA首席架构师Nicholas Wilt亲笔撰写,英伟达中国首批CUDA官方认证工程师翻译;全面而系统地讲解CUDA编程的各方面知识,深度解析CUDA各种优化技术,包含大量实用代码示例,是深入掌握主流异构并行计算技术的权威指南。

2019-05-02

OpenVINO视觉加速库依赖包

OpenVINO视觉加速库相关的依赖库,不能在线安装时,可以手动下载安装

2019-04-14

linux下安装Anaconda3+pytorch+tensorboardX依赖包

linux下安装Anaconda3+pytorch+tensorboardX依赖包, 安装见 https://blog.csdn.net/shanglianlm/article/details/88749803

2019-03-23

CUDA并行程序设计 GPU编程指南

CUDA并行程序设计:GPU编程指南共分为12章。 第1章 超级计算简史 第2章 使用GPU理解并行计算 第3章 CUDA硬件概述 第4章 CUDA环境搭建 第5章 线程网格、线程块以及线程 第6章 CUDA内存处理 第7章 CUDA实践之道 第8章 多CPU和多GPU解决方案 第9章 应用程序性能优化 第10章 函数库和SDK 第11章 规划GPU硬件系统 第12章 常见问题、原因及解决方案

2019-05-02

爬虫爬取网易汽车车型库【Java代码】

爬虫爬取网易汽车车型库【Java代码】不同品牌/车标(共175个车标)下不同车系(共1650个系列)的的图片(各八张)

2017-04-16

Quartz 示例代码

Quartz 是一个完全由 Java 编写的开源企业级作业调度框架。Quartz允许开发人员根据时间间隔来调度作业。它实现了作业和触发器的多对多的关系,还能把多个作业与不同的触发器关联。

2017-05-02

训练好用于车牌分割的神经网络

训练好用于车牌识别的神经网络,0-9,A-Z(不含I和O),每个字符使用50张图片,训练好用于车牌识别的神经网络。

2017-09-22

java反射示例代码

Java反射机制:反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意一个方法和属性;这种动态获取的信息以及动态调用对象的方法的功能。

2017-05-01

OpenCV3_CVPR_2015.pptx

opencv3新增加的功能,CVPR2015年会议上的PPT,共三个文件

2015-06-17

CUDA C编程权威指南

CUDA C编程权威指南 第1章 基于CUDA的异构并行计算1 第2章 CUDA编程模型18 第3章 CUDA执行模型56 第4章 全局内存115 第5章 共享内存和常量内存174 第6章 流和并发230 第7章 调整指令级原语258 第8章 GPU加速库和OpenACC281

2019-05-02

MyEclipse8.6(汉化插件教程)

MyEclipse8.6(汉化插件教程)MyEclipse8.6(汉化插件教程)MyEclipse8.6(汉化插件教程)

2011-07-26

Java 核心技术(第八版)高清电子书PDF和代码

Java 核心技术(第八版)高清电子书PDF和代码

2015-07-27

Java反射机制代码

Java反射机制:反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意一个方法和属性;这种动态获取的信息以及动态调用对象的方法的功能。

2017-05-01

Java爬虫爬取网易汽车车型库

Java爬虫爬取网易汽车车型库

2017-04-15

mingo_敏的留言板

发表于 2020-01-02 最后回复 2020-03-31

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除