自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

mingo_敏

计算机视觉和模式识别,深度学习

  • 博客(442)
  • 资源 (14)
  • 论坛 (1)
  • 收藏
  • 关注

原创 PyTorch填坑攻略

RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 0RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 0. Got 337 and 336 in dimension 3 ...

2020-04-14 19:41:14 1002

转载 PyTorch Cookbook(常用代码段整理合集)

本文代码基于PyTorch 1.0版本,需要用到以下包import collectionsimport osimport shutilimport tqdmimport numpy as npimport PIL.Imageimport torchimport torchvision1 基础配置1-1 检查PyTorch版本torch.__version__ ...

2019-04-27 15:58:29 2208 4

原创 Linux常见命令汇总(累积中。。。)

Linux下统计当前文件夹下的文件个数、目录个数统计当前文件夹下文件的个数,包括子文件夹里的ls -lR|grep "^-"|wc -l统计文件夹下目录的个数,包括子文件夹里的ls -lR|grep "^d"|wc -l统计当前文件夹下文件的个数ls -l |grep "^-&quot

2018-12-06 11:08:08 1147 11

原创 本博客目录及版权申明

【C++ Primer 学习笔记】系列:第一部分 基本语言第二部分 容器和算法 【C++ Primer 学习笔记】: 容器和算法之【顺序容器】 【C++ Primer 学习笔记】: 容器和算法之【关联容器】 【C++ Primer 学习笔记】: 容器和算法之【泛型算法】第三部分 类和数据抽象第四部分 面向对象编程与泛型算法第五部分 高级主题【Java: 23种设计模式】系列 Java: 23

2015-11-25 17:37:30 1266 1

原创 凸优化:ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法

[本文链接:http://www.cnblogs.com/breezedeus/p/3496819.html,转载请注明出处]最近开始对凸优化(convex optimization)开始感兴趣,接下来我会写一系列关于凸优化(convex optimization)的内容。本文主要对ADMM(Alternating Direction Method of Multipliers)交替方向乘子算法做一

2015-05-22 17:27:34 50674 13

原创 linux启动后sshd服务自动运行

将启动命令添加到/etc/rc.local文件中或者/etc/rc.d/rc.local文件中;vi /etc/rc.local添加内容如下:service sshd start或者:/etc/init.d/sshd start

2021-12-07 13:18:02 8

原创 深度学习论文: Rethink Dilated Convolution for Real-time Semantic Segmentation及其PyTorch实现

深度学习论文: Rethink Dilated Convolution for Real-time Semantic Segmentation及其PyTorch实现Rethink Dilated Convolution for Real-time Semantic SegmentationPDF: https://arxiv.org/pdf/2111.09957.pdfPyTorch代码: https://github.com/shanglianlm0525/CvPytorch

2021-12-02 16:39:03 1243

原创 深度学习论文: NAM: Normalization-based Attention Module及其PyTorch实现

深度学习论文: NAM: Normalization-based Attention Module及其PyTorch实现NAM: Normalization-based Attention ModulePDF: https://arxiv.org/pdf/2111.12419.pdfPyTorch代码: https://github.com/shanglianlm0525/CvPytorchPyTorch代码: https://github.com/shanglianlm0525/PyTorch-N

2021-12-01 09:23:17 8

原创 深度学习论文: Remote Sensing Image Object Detection Based on Angle Classification

深度学习论文: Remote Sensing Image Object Detection Based on Angle Classification及其PyTorch实现Remote Sensing Image Object Detection Based on Angle ClassificationPDF: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9521517PyTorch代码: https://github.c

2021-11-10 13:35:49 1608

原创 深度学习论文: EfficientDet: Scalable and Efficient Object Detection及其PyTorch实现

深度学习论文: EfficientDet: Scalable and Efficient Object Detection及其PyTorch实现EfficientDet: Scalable and Efficient Object DetectionPDF: https://arxiv.org/pdf/1911.09070v1.pdfPyTorch代码: https://github.com/shanglianlm0525/CvPytorchPyTorch代码: https://github.com

2021-11-05 09:44:29 40

原创 yolov5修改non_max_suppression支持多个置信度过滤

如题原始的non_max_suppressiondef non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, labels=()): """Runs Non-Maximum Suppression (NMS) on inference results Returns:

2021-10-29 14:54:15 177

原创 深度学习论文: MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer及其PyTorch实现

深度学习论文: MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer及其PyTorch实现MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision TransformerPDF: https://arxiv.org/pdf/2110.02178.pdfPyTorch代码: https://github.com/sha

2021-10-15 16:13:53 131

原创 学习笔记:计算机视觉------算法与应用

课程名称:计算机视觉------算法与应用课程地址:第一章 概述第二章 图像形成第三章 图像处理第四章 特征检测与匹配第五章 分割第六章 基于特征的匹配第七章 由运动到结构第八章 稠密运动估计第九章 图像拼接第十章 计算摄影学第十一章 立体匹配第十二章 3D 重建第十三章 基于图像的渲染...

2021-10-02 20:36:06 42

原创 深度学习论文: TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head 及其PyTorch实现

深度学习论文: TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-captured Scenarios及其PyTorch实现TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-captured ScenariosPDF: http

2021-09-14 10:29:04 537

原创 深度学习论文: You Only Look at Once for Panoptic driving Perception及其PyTorch实现

深度学习论文: You Only Look at Once for Panoptic driving Perception及其PyTorch实现You Only Look at Once for Panoptic driving PerceptionPDF: https://arxiv.org/pdf/2108.11250.pdf1 概述2 Architecture2-1 EncoderBackbone:Neck:2-2 DecodersDetect HeadDrivable Are

2021-09-02 14:59:03 62

原创 yolov5检测限定长宽比检测范围的目标

正常环境下,我们所使用的数据中,不同类别的目标尺寸范围都有一定的范围,在工业缺陷检测领域尤其如此,因此我们修改yolov5使其能针对特定目标只输出特定区域的目标。如: A目标长宽比大于10小于20, B目标长宽比大于20小于40等修改如下:train.pyparser.add_argument('--ar_thr', nargs='+', type=int, default=[101,130,46,12,17], help='ar_thr of dataset to be used')datas

2021-08-27 14:20:48 256

原创 学习笔记:Jetson:适用于自主机器的嵌入式系统

课程名字:Jetson:适用于自主机器的嵌入式系统课程地址:https://aijishu.com/blog/jetsonshiyongyuz

2021-08-26 18:38:00 66

原创 学习笔记:CS520 Knowledge Graphs

课程名称:Knowledge Graphs课程地址:https://web.stanford.edu/class/cs520/Week 1 What is a Knowledge Graph?Week 2 What are some Knowledge Graph data models?

2021-08-26 10:22:24 37

原创 实用的C++线程池

代码来自:https://github.com/progschj/ThreadPool/blob/master/ThreadPool.h#ifndef THREAD_POOL_H#define THREAD_POOL_H#include <vector>#include <queue>#include <memory>#include <thread>#include <mutex>#include <condition_v

2021-08-24 15:53:43 24

原创 深度学习论文: MicroNet: Improving Image Recognition with Extremely Low FLOPs及其PyTorch实现

深度学习论文: MicroNet: Improving Image Recognition with Extremely Low FLOPs及其PyTorch实现MicroNet: Improving Image Recognition with Extremely Low FLOPsPDF: https://arxiv.org/pdf/2108.05894.pdf1 概述MicroNet的提出主要的遵循以下两个设计原则:降低网络节点(神经元)之间的连通性而不降低网络的宽度使用更复杂的非线性激

2021-08-18 13:51:25 264

原创 NLP和CV中的Local和Global建模

CNN的感受野受卷积核大小的限制,导致了CNN实际上是一种Local的信息建模;而Self-Attention(SA)是将每个位置和所有位置计算attention weight,考虑了每个点之间的联系,因此SA是一种Global的建模。起初,CNN大多用在CV领域中,而SA大多用在NLP领域中。但是随着SA和CNN各自优缺点的显现(如下表所示),越来越多的文章对这两个结构进行了混合的应用,使得模型不仅能够捕获全局的信息,还能建模局部信息来建模更加细粒度的信息。1)Conv的卷积核是静态的,是与输入的特

2021-07-13 15:24:25 67

原创 Nvidia: 8-bit Inference with TensorRT

2021-06-24 21:46:55 121 2

原创 yolov5中修改fitness

代码位置: utils\metrics\fitness.pyyolov5默认是在coco上训练的,因此mAP@0.5:0.95权重占比较大def fitness(x): # Model fitness as a weighted combination of metrics w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95] return (x[:, :4] * w).sum(1)但是实际

2021-06-23 14:54:17 277 1

转载 深度学习中Attention与全连接层的区别何在?

Attention的最终输出可以看成是一个“在关注部分权重更大的全连接层”。但是它与全连接层的区别在于,注意力机制可以利用输入的特征信息来确定哪些部分更重要。举个例子:输入层有A,B,C三个特征向量,我们需要构造一层网络来确定三者的权重,然后加权求和得到输出O。也就是得到三个权重 ωa\omega_{a}ωa​, ωb\omega_{b}ωb​ 和 ωc\omega_{c}ωc​,然后得到O=ωaA+ωbB+ωcCO = \omega_{a}A+ \omega_{b}B + \omega_{c}CO=

2021-06-22 13:24:33 110

原创 目标检测中的Classificition Loss

Classificition LossPyTorch: https://github.com/shanglianlm0525/CvPytorch目标检测任务的损失函数由Classificition Loss和Bounding Box Regeression Loss两部分构成。本文介绍目标检测任务中近几年来Classificition Loss的演变过程参考资料:1 一文看尽深度学习中的15种损失函数...

2021-06-07 16:58:42 126 1

转载 目标检测中bbox回归中class-agnostic和class-specific的区别在哪?

目标检测中bbox回归中class-agnostic和class-specific的区别在哪?class-specific 方式,很多地方也称作class-aware的检测,是早期Faster RCNN等众多算法采用的方式。它利用每一个RoI特征回归出所有类别的bbox坐标,最后根据classification 结果索引到对应类别的box输出。这种方式对于ms coco有80类前景的数据集来说,并不算效率高的做法。class-agnostic 方式只回归2类bounding box,即前景和背景

2021-05-31 08:19:26 98

原创 PyTorch中的Hook函数

Hook 函数是在不改变主体的情况下,实现额外功能。由于 PyTorch 是基于动态图实现的,因此在一次迭代运算结束后,一些中间变量如非叶子节点的梯度和特征图,会被释放掉。在这种情况下想要提取和记录这些中间变量,就需要使用 Hook 函数。PyTorch 提供了 4 种 Hook 函数。1 torch.Tensor.register_hook(hook)**功能:**注册一个反向传播 hook 函数,仅输入一个参数,为张量的梯度。hook函数:hook(grad)参数:grad:张量的梯度

2021-05-26 14:59:15 171

原创 深度学习论文: Activate or Not: Learning Customized Activation及其PyTorch实现

深度学习论文: Activate or Not: Learning Customized Activation及其PyTorch实现Activate or Not: Learning Customized ActivationPDF: https://arxiv.org/pdf/2009.04759.pdfPyTorch代码:https://github.com/shanglianlm0525/CvPytorchPyTorch代码:https://github.com/shanglianlm0525

2021-05-18 16:29:59 196

原创 目标检测中的Bounding Box Regression Loss

Bounding Box Regression LossPyTorch: https://github.com/shanglianlm0525/CvPytorch目标检测任务的损失函数由Classificition Loss和Bounding Box Regeression Loss两部分构成。本文介绍目标检测任务中近几年来Bounding Box Regression Loss Function的演变过程Smooth L1 Loss优点:缺点:Focal Loss优点:缺点:Io

2021-05-10 21:57:06 285

原创 PyTorch代码优化技巧

1 直接在GPUs上构建张量很多人都是这样在GPUs上创建张量的t = tensor.rand(2,2).cuda()然而,这首先创建CPU张量,然后将其转移到GPU……这真的很慢。相反,直接在想要的设备上创建张量。t = tensor.rand(2,2, device=torch.device('cuda:0'))2 使用DistributedDataParallel不要使用DataParallelPyTorch有两个主要的模式用于在多 GPUs训练。第一种是DataParallel,它

2021-05-08 10:58:43 172 2

原创 深度学习论文: Rethinking BiSeNet For Real-time Semantic Segmentation及其PyTorch实现

深度学习论文: Rethinking BiSeNet For Real-time Semantic Segmentation及其PyTorch实现Rethinking BiSeNet For Real-time Semantic SegmentationPDF:https://arxiv.org/pdf/2104.13188.pdfPyTorch: https://github.com/shanglianlm0525/PyTorch-Networks

2021-05-06 08:58:02 94

原创 Numba加速python代码

Numba 读取装饰函数的 Python 字节码,并将其与有关函数输入参数类型的信息结合起来,分析和优化代码,最后使用编译器库(LLVM)针对你的 CPU 生成量身定制的机器代码。每次调用函数时,都会使用此编译版本,来达到加速的目的。import mathimport timefrom numba import njit, prange# @njit 相当于 @jit(nopython=True)@njitdef is_prime(num): if num == 2: .

2021-04-20 09:56:54 95

原创 修改yolov5的输入图像尺寸为指定尺寸

yolov5支持两种训练方式:加入指定输入img-size为640square (w==h)如 输入为 [b, c, 640, 640], 可以使用mosic数据增强方式增强图像rect(scale):如 输入为 [b, c, 640, 512], 其中512为短边放缩以后的尺寸(补充到32的倍数)但是不支持mosic数据增强方式但是有的时候在实际项目使用中,可能会涉及到需要同时指定输入图像的长和宽,因为对yolov5代码做一些修改以适应于项目需求。修改后的代码如下:...

2021-04-12 15:00:34 4453 6

原创 yolov5中关闭wandb

在 utils/wandb_logging/wandb_utils.pytry: import wandb from wandb import init, finishexcept ImportError: wandb = None后面添加wandb = None就可以关掉讨人厌的wandb了,哈哈哈哈哈哈哈哈!

2021-04-01 18:48:27 3185 9

原创 深度学习论文: Refining activation downsampling with SoftPool及其PyTorch实现

深度学习论文: Refining activation downsampling with SoftPool及其PyTorch实现Refining activation downsampling with SoftPoolPDF: https://arxiv.org/pdf/2101.00440v3.pdfPyTorch代码:https://github.com/shanglianlm0525/CvPytorchPyTorch代码:https://github.com/shanglianlm0525

2021-03-26 14:54:12 258

原创 NVIDIA DALI从入门到放弃之二:入门示例

NVIDIA DALI从入门到放弃之一:概述NVIDIA DALI从入门到放弃之二:入门示例NVIDIA DALI从入门到放弃之三:Data LoadingNVIDIA DALI从入门到放弃之四:Multiple GPUNVIDIA DALI从入门到放弃之五:Image ProcessingNVIDIA DALI从入门到放弃之六:Geometric TransformsNVIDIA DALI从入门到放弃之七:Sequence ProcessingNVIDIA DALI从入门到放弃之八:PyTo

2021-03-25 22:38:32 586

原创 NVIDIA DALI从入门到放弃之一:概述

NVIDIA DALI从入门到放弃之一:概述NVIDIA DALI从入门到放弃之二:入门示例NVIDIA DALI从入门到放弃之三:Data LoadingNVIDIA DALI从入门到放弃之四:Multiple GPUNVIDIA DALI从入门到放弃之五:Image ProcessingNVIDIA DALI从入门到放弃之六:Geometric TransformsNVIDIA DALI从入门到放弃之七:Sequence ProcessingNVIDIA DALI从入门到放弃之八:PyTo

2021-03-25 22:33:42 677

原创 NVIDIA DALI从入门到放弃之六:Geometric Transforms

NVIDIA DALI从入门到放弃之一:概述NVIDIA DALI从入门到放弃之二:入门示例NVIDIA DALI从入门到放弃之三:Data LoadingNVIDIA DALI从入门到放弃之四:Multiple GPUNVIDIA DALI从入门到放弃之五:Image ProcessingNVIDIA DALI从入门到放弃之六:Geometric Transforms1 Cataloguerotation - rotate by given angle (in degrees) aroun

2021-03-24 22:21:13 246

原创 python设计模式之工厂模式(Factory Pattern)

工厂模式的本质就是用工厂方法代替new操作创建一种实例化对象的方式.import randomfrom typing import Typeclass Pet: def __init__(self, name: str) -> None: self.name = name def speak(self) -> None: raise NotImplementedError def __str__(self) -> str

2021-03-24 09:38:37 352

原创 NVIDIA DALI从入门到放弃之五:Image Processing

NVIDIA DALI从入门到放弃之一:概述NVIDIA DALI从入门到放弃之二:入门示例NVIDIA DALI从入门到放弃之三:Data LoadingNVIDIA DALI从入门到放弃之四:Multiple GPUNVIDIA DALI从入门到放弃之五:Image Processing1 Image Decoder-1 CPU-2 GPUColor Space Conversion-1 CPU-2 GPUBrightnessContrast-1 CPU-2 GPUHSV-

2021-03-20 16:37:08 410

CUDA专家手册 [GPU编程权威指南]

《CUDA专家手册:GPU编程权威指南》英伟达公司CUDA首席架构师Nicholas Wilt亲笔撰写,英伟达中国首批CUDA官方认证工程师翻译;全面而系统地讲解CUDA编程的各方面知识,深度解析CUDA各种优化技术,包含大量实用代码示例,是深入掌握主流异构并行计算技术的权威指南。

2019-05-02

linux下安装Anaconda3+pytorch+tensorboardX依赖包

linux下安装Anaconda3+pytorch+tensorboardX依赖包, 安装见 https://blog.csdn.net/shanglianlm/article/details/88749803

2019-03-23

CUDA并行程序设计 GPU编程指南

CUDA并行程序设计:GPU编程指南共分为12章。 第1章 超级计算简史 第2章 使用GPU理解并行计算 第3章 CUDA硬件概述 第4章 CUDA环境搭建 第5章 线程网格、线程块以及线程 第6章 CUDA内存处理 第7章 CUDA实践之道 第8章 多CPU和多GPU解决方案 第9章 应用程序性能优化 第10章 函数库和SDK 第11章 规划GPU硬件系统 第12章 常见问题、原因及解决方案

2019-05-02

OpenVINO视觉加速库依赖包

OpenVINO视觉加速库相关的依赖库,不能在线安装时,可以手动下载安装

2019-04-14

爬虫爬取网易汽车车型库【Java代码】

爬虫爬取网易汽车车型库【Java代码】不同品牌/车标(共175个车标)下不同车系(共1650个系列)的的图片(各八张)

2017-04-16

Quartz 示例代码

Quartz 是一个完全由 Java 编写的开源企业级作业调度框架。Quartz允许开发人员根据时间间隔来调度作业。它实现了作业和触发器的多对多的关系,还能把多个作业与不同的触发器关联。

2017-05-02

训练好用于车牌分割的神经网络

训练好用于车牌识别的神经网络,0-9,A-Z(不含I和O),每个字符使用50张图片,训练好用于车牌识别的神经网络。

2017-09-22

java反射示例代码

Java反射机制:反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意一个方法和属性;这种动态获取的信息以及动态调用对象的方法的功能。

2017-05-01

OpenCV3_CVPR_2015.pptx

opencv3新增加的功能,CVPR2015年会议上的PPT,共三个文件

2015-06-17

CUDA C编程权威指南

CUDA C编程权威指南 第1章 基于CUDA的异构并行计算1 第2章 CUDA编程模型18 第3章 CUDA执行模型56 第4章 全局内存115 第5章 共享内存和常量内存174 第6章 流和并发230 第7章 调整指令级原语258 第8章 GPU加速库和OpenACC281

2019-05-02

MyEclipse8.6(汉化插件教程)

MyEclipse8.6(汉化插件教程)MyEclipse8.6(汉化插件教程)MyEclipse8.6(汉化插件教程)

2011-07-26

Java 核心技术(第八版)高清电子书PDF和代码

Java 核心技术(第八版)高清电子书PDF和代码

2015-07-27

Java反射机制代码

Java反射机制:反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意一个方法和属性;这种动态获取的信息以及动态调用对象的方法的功能。

2017-05-01

Java爬虫爬取网易汽车车型库

Java爬虫爬取网易汽车车型库

2017-04-15

mingo_敏的留言板

发表于 2020-01-02 最后回复 2020-03-31

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除