git安装及使用(每日一记)

1.  Git 安装

2. 编辑器的选取

3. 命令环境的选择;

(1)这个是最安全的,你只能通过git bash来操作git命令;

(2)这个选项被认为是安全的,因为它只添加一些最小的git包装器路径,以避免使用可选的unix工具混乱你的环境。你将能够使用git bash和windows命令提示符下的git

(3)git和可选的unix工具都将添加到您的路径中

4. 选择https传输后端:

(1)将使用ca-bundle.crt文件验证服务器证书

(2)服务器证书将使用Windows证书库进行验证。 此选项还允许您使用公司的内部根CA证书分发,例如 通过活动目录域服务

5. 配置行结束转换

(1)检查文本文件时,git会将LF转换为CRLF。当提交文本文件时,crlf将转换为LF。 对于跨平台项目,这是Windows上的推荐设置(“core.autocrlf”设置为“true”)

(3)签出或提交文本文件时,git不会执行任何转换。 不建议跨平台项目选择此选项

6. 配置终端仿真器以与git bash一起使用

(1)git bash将使用MinTTY作为终端模拟器,它具有可调整大小的窗口,非矩形选择和unicode font.windows控制台程序(如交互式Python)必须通过'winpty'启动才能在MinTTY中工作。

(2)git将使用windows的默认控制台窗口(“cmd.exe”),它适用于win32控制台程序,如交互式python或node.js,但具有非常有限的默认回滚,需要配置为使用 Unicode字体,以便正确显示非ASCII字符,并且在Windows 10之前,其窗口不能自由调整大小,并且它只能进行矩形文本选择。

7. 配置额外选项

(1)文件系统数据将被批量读取并缓存在内存中以进行某些操作(“core.fscache”设置为“true”)。 这提供了显着的性能提升。

(2)Windows的git凭证管理器为Windows提供安全的git凭证存储,最显着的是对Visual Studio团队服务和github的多认证支持(requires.net framework v4.5或更高版本)。

(3)启用符号链接(需要SecreateSymbolicLink权限)。请注意,现有存储库不受此设置的影响

 

2 使用

1)两种签名方式(相关配置信息会保存在当前仓库目录下 的.git/config文件中)

① (单个仓库有效)git config user.name   // git config user.email

②(全局有效)git config --global user.name   // git config --global user.email

 

 

BHK
03-20 188
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值