1. 原因:使用dateutil的rrule时,计算速度比较慢
def axx():
from dateutil import rrule
received_time = datetime.datetime.strptime('2019-04-21 23:00:00', '%Y-%m-%d %H:%M:%S')
complete_time = datetime.datetime.strptime('2019-04-22 01:00:00', '%Y-%m-%d %H:%M:%S')
workdays = [x for x in range(7) if x not in [5, 6]]
time_period = rrule.rrule(rrule.MINUTELY, dtstart=received_time, until=complete_time, byweekday=workdays).count()
print(time_period)
2. 尝试使用pandas的bdate_range,但是发现只统计工作日天数,即便不足1天也是按1天算的,不符合需求,因为我要分钟
def xxa():
import pandas as pd
date = pd.bdate_range('2019-04-21 23:00:00', '2019-04-22 01:00:00', freq='min')
minutes = len(date)
print(minutes)
print(minutes/(60*60))
3. 从stackoverflow找到一个方法
def xax():
from business_duration import businessDuration
import pandas as pd
received_time = pd.to_datetime('2019-04-21 23:00:00')
complete_time = pd.to_datetime('2019-04-22 01:15:00')
period = businessDuration(received_time, complete_time, unit='min')
print(period)
4. 自己使用pandas写的,还需测试
def aaa():
import pandas as pd
# test case 1
# received_time = '2019-04-21 23:00:00'
# complete_time = '2019-04-22 01:00:00'
# received_time = '2019-04-19 23:00:00'
# complete_time = '2019-04-20 01:00:00'
# test case 2
# received_time = '2019-04-18 23:00:00'
# complete_time = '2019-04-20 01:00:00'
# received_time = '2019-04-21 23:00:00'
# complete_time = '2019-04-23 01:00:00'
# test case 3
# received_time = '2019-04-21 23:00:00'
# complete_time = '2019-04-24 01:00:00'
# received_time = '2019-04-18 23:00:00'
# complete_time = '2019-04-20 01:00:00'
# test case 5
received_time = '2019-04-19 23:00:00'
complete_time = '2019-04-22 01:00:00'
received_date = pd.to_datetime(received_time)
complete_date = pd.to_datetime(complete_time)
date_period = pd.bdate_range(received_time, complete_time)
if date_period[0] == date_period[-1]:
if date_period[0] > received_date:
start = date_period[0]
end = complete_date
else:
start = received_date
end = date_period[0] + datetime.timedelta(days=1)
day_time = len(pd.date_range(start, end, freq='min')) - 1
print('Workdays:' + str(day_time) + ' minutes')
else:
if (complete_date - date_period[-1]).days > 0:
end = date_period[-1] + datetime.timedelta(days=1)
else:
end = complete_date
if received_date < date_period[0]:
start = date_period[0]
else:
start = received_date
received_per = pd.date_range(start, date_period[0] + datetime.timedelta(days=1), freq='min')
complete_per = pd.date_range(date_period[-1], end, freq='min')
middle_time = (len(date_period) - 2) * 1440
days_time = len(received_per) + middle_time + len(complete_per) - 2
print('Workdays:' + str(days_time) + ' minutes')
参考:https://stackoverflow.com/questions/46899627/business-hours-between-two-dates-in-pandas-dataframe-including-holidays?rq=1