这句话送给各位,有时人也是这样,
比如跳槽转型,就仿佛回到最初,辛苦但却满足。
祝金九银十的奔跑的people,
都能够找份满意的work。
一、背景
最近有个需求,需要解析数仓中某张表的某个字段,该字段为JSON,且为嵌套的多层JSON,JSON数据格式化之后如下:
由于是生产环境上的数据,因此对于某些value以xxx进行替代,并不影响sql的编写样例:
[{"categoryId":"9","categoryName":"xxx","brandList":[{"brandId":"597","brandName":"xxx"}]},{"categoryId":"5","categoryName":"xxx","brandList":[{"brandId":"597","brandName":"xxx"}]},{"categoryId":"10","categoryName":"xxx","brandList":[{"brandId":"529","brandName":"xxx","seriesList":[{"seriesId":"22","seriesName":"xxx"}]}]}][{"brandList":[{"brandId":"752","brandName":"xxx"},{"brandId":"516","brandName":"xxx"},{"brandId":"650","brandName":"xxx"},{"brandId":"586","brandName":"xxx"},{"brandId":"630","brandName":"xxx"}],"categoryId":"542","categoryName":"xxx"},{"brandList":[{"brandId":"752","brandName":"xxx"},{"brandId":"650","brandName":"xxx"}],"categoryId":"7","categoryName":"xxx"},{"brandList":[{"brandId":"529","brandName":"xxx","seriesList":[{"seriesId":"22","seriesName":"xxx"}]}],"categoryId":"10","categoryName":"xxx"}]
需求是需要提取出每个这种JSON中所有的brandName。
二、解决方案
2.1 思路1:
使用hive自带的get_json_object函数进行处理
select get_json_object(brand_control,"$[0].brandList"), get_json_object(get_json_object(brand_control,"$[0].brandList"), "$[0].brandName")from 库名.表名where dayid='20190729'
尝试之后,发现最终的效果只能是取出其中一个brandname,并不能取出全部。
2.2 思路2:
既然使用自带的json处理函数不能满足,那么就自己去开发一个udf函数,思路比较简单,只要将读入的每个json进行解析,一个for循环,将里面的brandName依次拿出来就行。
2.3 思路3:其实Hive SQL也可以一行sql直接搞定,没必要写什么udf,思路如下:
1)将json 以brand_name进行切分成多行 使用lateral view和explode进行配合处理
2)对每一行数据进行处理 提取出品牌名
3)剔除为数字的情况
select seller_id, collect_set(split(split(brand_name,'":"')[1],'"')[0]) as brand_namefrom (select seller_id, brand_name, brand_control from 库名.表名 lateral view explode( split(brand_control,'brandName') ) adTable as brand_name where dayid = '20190729' ) awhere (split(split(brand_name,'":"')[1],'"')[0] REGEXP '[^0-9.]')!=0 --剔除brand_name为数字的情况group by seller_id
这样,对应的一个seller_id就将对应的所有branName给全部取了出来,以一个list的形式拼接在了一起。
最新文章回顾:
金九银十的100道大数据面试题
自测 | 13家大数据面试题
高级班学员又一个总结
36岁做管理如何转型大数据
2019情人节线下项目第15期圆满结束
捷报:连续10周若泽数据第32-34名学员喜捷offer(年薪40W)
捷报:连续11周若泽数据第35-36名学员喜捷offer(年薪50W)
如何避免生产Spark Shuffle的某场景
解决生产CDH Spark2的No such file or directory错误
生产上Spark对MySQL加载并发提高的两种代码(彩蛋)
生产大数据集群资源监控--指标获取(含code)
生产大数据集群资源监控--HDFS指标获取(含code)
Spark+Flink全栈训练营
高级班第7期
单击【】,获取高级班课表