wordcount.java_我在CentOS系统中配置hadoopp,在eclipse中运行hadoopp的wordcount.java源代码...

本文介绍了如何在CentOS系统中配置Hadoop环境,并在Eclipse中运行WordCount.java示例。遇到权限错误后,通过修改Hadoop源代码解决问题,最终成功运行并展示了运行结果。
摘要由CSDN通过智能技术生成

展开全部

新建一个hadoop工程,如图

建一个运行wordcount的类,先不管他什么意思,代码如下

[java] view plain copy

/**

* Project: hadoop

*

* File Created at 2012-5-21

* $Id$

*/

package seee.you.app;

import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

public static class TokenizerMapper extends Mapper{

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {

word.set(itr.nextToken());

context.write(word, one);

}

}

}

public static class IntSumReducer extends Reducer {

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable values, Context context)

throws IOException, InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

context.write(key, result);

}

}

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

if (args.length != 2) {

System.err.println("Usage: wordcount ");

System.exit(2);

}

Job job = new Job(conf, "word count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);

job.setReducerClass(IntSumReducer.class);

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(IntWritable.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

}

}

这时候右键run on hadoop

这时候不幸的是,报错了,错误信息如下:

[java] view plain copy

12/05/23 19:38:51 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

12/05/23 19:38:51 ERROR security.UserGroupInformation: PriviledgedActionException as:yongkang.qiyk cause:java.io.IOException: Failed to set permissions of path: \tmp\hadoop-yongkang\mapred\staging\yongkang.qiyk-1840800210\.staging to 0700

Exception in thread "main" java.io.IOException: Failed to set permissions of path: \tmp\hadoop-yongkang\mapred\staging\yongkang.qiyk-1840800210\.staging to 0700

at org.apache.hadoop.fs.FileUtil.checkReturnValue(FileUtil.java:682)

at org.apache.hadoop.fs.FileUtil.setPermission(FileUtil.java:655)

at org.apache.hadoop.fs.RawLocalFileSystem.setPermission(RawLocalFileSystem.java:509)

at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:344)

at org.apache.hadoop.fs.FilterFileSystem.mkdirs(FilterFileSystem.java:189)

at org.apache.hadoop.mapreduce.JobSubmissionFiles.getStagingDir(JobSubmissionFiles.java:116)

at org.apache.hadoop.mapred.JobClient$2.run(JobClient.java:856)

at org.apache.hadoop.mapred.JobClient$2.run(JobClient.java:850)

at java.security.AccessController.doPrivileged(Native Method)

at javax.security.auth.Subject.doAs(Subject.java:396)

at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1093)

at org.apache.hadoop.mapred.JobClient.submitJobInternal(JobClient.java:850)

at org.apache.hadoop.mapreduce.Job.submit(Job.java:500)

at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:530)

at seee.you.app.WordCount.main(WordCount.java:80)

错误信息很明显了,at org.apache.hadoop.fs.FileUtil.checkReturnValue(FileUtil.java:682) 这一行的32313133353236313431303231363533e4b893e5b19e31333339663438方法报错了

网上查到这是由于0.20.203.0以后的版本的权限认证引起的,只有去掉才行

修改hadoop源代码,去除权限认证,修改FileUtil.java的checkReturnValue方法,如下:

[java] view plain copy

private static void checkReturnValue(boolean rv, File p,

FsPermission permission

) throws IOException {

// if (!rv) {

// throw new IOException("Failed to set permissions of path: " + p +

// " to " +

// String.format("%04o", permission.toShort()));

// }

}

去掉这一行后,需要重新编译打包下,打包成功之后,可以将hadoop-core-1.0.2.jar拷贝到hadoop根目录下,eclipse中重新导入下即可(我用的这个1.0.2是从网上下载的修改好的,比较省事)

这时重新运行下实例,运行实例需要配置下arguments参数,我的配置如下:

run一下,结果如下,说明已经成功了

[java] view plain copy

WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.

****hdfs://10.16.110.7:9000/user/yongkang/test-in

INFO input.FileInputFormat: Total input paths to process : 0

INFO mapred.JobClient: Running job: job_local_0001

INFO mapred.Task: Using ResourceCalculatorPlugin : null

INFO mapred.LocalJobRunner:

INFO mapred.Merger: Merging 0 sorted segments

INFO mapred.Merger: Down to the last merge-pass, with 0 segments left of total size: 0 bytes

INFO mapred.LocalJobRunner:

INFO mapred.Task: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting

INFO mapred.LocalJobRunner:

INFO mapred.Task: Task attempt_local_0001_r_000000_0 is allowed to commit now

INFO output.FileOutputCommitter: Saved output of task 'attempt_local_0001_r_000000_0' to /user/yongkang/test-out6

INFO mapred.JobClient: map 0% reduce 0%

INFO mapred.LocalJobRunner: reduce > reduce

INFO mapred.Task: Task 'attempt_local_0001_r_000000_0' done.

INFO mapred.JobClient: map 0% reduce 100%

INFO mapred.JobClient: Job complete: job_local_0001

INFO mapred.JobClient: Counters: 10

INFO mapred.JobClient: File Output Format Counters

INFO mapred.JobClient: Bytes Written=0

INFO mapred.JobClient: FileSystemCounters

INFO mapred.JobClient: FILE_BYTES_READ=8604

INFO mapred.JobClient: FILE_BYTES_WRITTEN=51882

INFO mapred.JobClient: Map-Reduce Framework

INFO mapred.JobClient: Reduce input groups=0

INFO mapred.JobClient: Combine output records=0

INFO mapred.JobClient: Reduce shuffle bytes=0

INFO mapred.JobClient: Reduce output records=0

INFO mapred.JobClient: Spilled Records=0

INFO mapred.JobClient: Total committed heap usage (bytes)=5177344

INFO mapred.JobClient: Reduce input records=0

2Q==

已赞过

已踩过<

你对这个回答的评价是?

评论

收起

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值