点到曲线的距离_速算!高中圆锥曲线——轨迹方程问题,这可不是开挂!

本文详细介绍了求解高中数学中圆锥曲线轨迹方程的多种方法,包括直接法、定义法、参数法、相关点法、交轨法和点差法。通过实例解析和变式练习,帮助学生掌握解决这类问题的关键技巧,并提供了解题过程中的注意事项。
摘要由CSDN通过智能技术生成

22fc5e2b11cc3343d47f9659e9166164.png

圆锥曲线是高考压轴大题,解题的关键往往是第一问能否求出轨迹方程。解答题中以待定系数法为多,一旦变换考法,想必不少学生都会懵。

为了更好的解决这一问题,助学团针对轨迹方程的常见考法做出了系统总结。如需更多解题技巧以及本篇原文档,欢迎关注后,与我详谈。

解题方法

直接法

根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(如两点间距离公式、点到直线距离公式、夹角公式等)进行整理、化简。这种求轨迹方程的过程不需要特殊的技巧,它是求轨迹方程的基本方法。

直接法解题步骤如下:

① 设点:设动点的坐标为(x,y)
② 列式:根据题目已知条件得到等量关系式
③ 化简:整合关系式
④ 范围:确认变量x,y的取值情况

例题:动点P到两个定点A(-3,0)和B(3,0)的距离之比等于2,即│PA│: │PB│=2:1,求动点P的轨迹方程。

9aa09700571d5bf5200339c9facf59b6.png

变式1:点M(x,y)到直线x=8的距离和它到定点F(1,0)的距离的比为2,则求动点M的轨迹方程。

变式2:分别过A1(-1,0),A2(1,0)作两条互相垂直的直线,则求它们的交点M的轨迹方程。

af7c957557a5faec6c72127bf8c97e34.png

定义法

如果动点 P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。

圆:到定点的距离等于定长轨迹集合。

椭圆:到两定点(焦点)的距离和等于定长(定长>两定点距离,否则为线段)的轨迹集合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值