圆锥曲线是高考压轴大题,解题的关键往往是第一问能否求出轨迹方程。解答题中以待定系数法为多,一旦变换考法,想必不少学生都会懵。
为了更好的解决这一问题,助学团针对轨迹方程的常见考法做出了系统总结。如需更多解题技巧以及本篇原文档,欢迎关注后,与我详谈。
解题方法
直接法
根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(如两点间距离公式、点到直线距离公式、夹角公式等)进行整理、化简。这种求轨迹方程的过程不需要特殊的技巧,它是求轨迹方程的基本方法。
直接法解题步骤如下:
① 设点:设动点的坐标为(x,y)
② 列式:根据题目已知条件得到等量关系式
③ 化简:整合关系式
④ 范围:确认变量x,y的取值情况
例题:动点P到两个定点A(-3,0)和B(3,0)的距离之比等于2,即│PA│: │PB│=2:1,求动点P的轨迹方程。
变式1:点M(x,y)到直线x=8的距离和它到定点F(1,0)的距离的比为2,则求动点M的轨迹方程。
变式2:分别过A1(-1,0),A2(1,0)作两条互相垂直的直线,则求它们的交点M的轨迹方程。
定义法
如果动点 P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
圆:到定点的距离等于定长轨迹集合。
椭圆:到两定点(焦点)的距离和等于定长(定长>两定点距离,否则为线段)的轨迹集合。