自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(119)
  • 资源 (3)
  • 收藏
  • 关注

原创 自动控制:控制系统的稳定性

在自动控制领域,控制系统的稳定性是一个至关重要的问题。稳定性决定了系统在受到扰动后是否能够恢复到平衡状态。本文将介绍控制系统稳定性的基本概念、如何利用特征值分析稳定性,并通过具体示例和Python代码展示如何判断系统的稳定性。

2024-05-30 17:11:16 578

原创 自动控制: 利用特征值求解常微分方程(ODEs)

在控制系统和工程分析中,求解常微分方程(ODEs)是一个常见且重要的任务。特征值和特征向量在这一过程中起着关键作用。本文将深入探讨如何利用特征值求解ODEs,特别是在分析系统稳定性方面的应用。通过具体示例和Python代码,我们将展示这一方法的实际操作步骤。

2024-05-30 17:10:31 371

原创 非线性优化:高斯-牛顿法的原理与实现

在实际应用中,很多问题都是非线性的。非线性优化问题广泛应用于机器学习、数据拟合、工程设计等领域。高斯-牛顿法是一种常用于解决非线性最小二乘问题的迭代算法。本文将详细介绍高斯-牛顿法的原理、推导过程,并通过Python代码实现该算法。

2024-05-29 13:25:29 332

原创 自动控制: 最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计

在数据分析和机器学习中,参数估计是一个关键步骤。最小二乘估计(LSE)、加权最小二乘估计(WLS)和线性最小方差估计(LMMSE)是几种常见的参数估计方法。这篇博客将详细介绍这些方法及其均方误差(MSE)的计算,并通过Python代码实现这些方法。

2024-05-29 13:21:48 602

原创 自动化机器学习——贝叶斯优化

贝叶斯优化是一种使用贝叶斯推断来优化目标函数的方法,它将目标函数视为一个黑盒子,并通过不断地观察目标函数的输出来寻找最优解。贝叶斯优化通常用于在有限次迭代中找到全局最优解,尤其在高维空间或目标函数计算代价高昂的情况下表现良好。贝叶斯优化是一种用于优化目标函数的强大方法,它通过不断地探索和利用目标函数的信息来寻找最优解。本文介绍了贝叶斯优化的定义、步骤、高斯过程回归计算目标函数后验分布的方法,并通过Python实现了一个简单的一维函数优化示例来演示其效果。

2024-05-22 18:03:55 924

原创 自动控制:PID控制及其参数整定方法

PID控制器(比例-积分-微分控制器)是工业控制系统中最广泛应用的控制器之一。它通过调节比例、积分和微分三个参数,来调整系统的输出,使其达到预期的设定值。本文将详细介绍PID控制器的工作原理,并探讨几种常见的参数整定方法,最后通过Python代码示例展示如何应用这些方法。

2024-05-22 12:52:43 1016

原创 基于卡尔曼滤波的轨迹估计研究

在目标追踪和导航领域,准确地估计目标的轨迹是至关重要的。而基于卡尔曼滤波的轨迹估计方法,作为一种经典的状态估计技术,在这一领域发挥着重要作用。本文将介绍基于卡尔曼滤波的轨迹估计原理、实现过程,并给出相应的Python代码示例。将探讨如何利用卡尔曼滤波器进行目标轨迹的持续估计和跟踪,并讨论其在无人驾驶、智能交通系统等领域的应用前景。

2024-05-18 17:00:22 924

原创 智能优化算法——遗传算法(Genetic Algorithm, GA)

遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传机制的优化算法,由John Holland在20世纪70年代提出。它模拟生物进化过程,通过选择、交叉和变异等操作,在搜索空间中找到最优解。本文将详细介绍GA算法的原理,并提供Python代码示例和可视化结果。

2024-05-17 12:34:06 1004

原创 智能优化算法——粒子群优化算法 (PSO)

粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,最早由Kennedy和Eberhart在1995年提出。它模仿了鸟群觅食的行为,通过群体协作和信息共享,在搜索空间中寻找最优解。本文将详细介绍PSO算法的原理、提供Python代码示例和可视化结果。

2024-05-17 12:25:35 1165

原创 基于 Kernel PCA 的故障检测与诊断

在工业领域,轴承是一种常见但重要的机械元件,负责支撑旋转部件并减少摩擦。然而,由于长时间的使用和环境因素等原因,轴承可能会出现各种故障,如磨损、裂纹等,这些故障如果不及时检测和诊断,可能会导致设备损坏甚至生产线停机,造成经济损失。因此,轴承故障检测与诊断技术对于维护设备的正常运行至关重要。近年来,基于 Kernel Principal Component Analysis (KPCA) 的方法在轴承故障检测与诊断领域得到了广泛关注和应用。

2024-05-14 13:39:31 394

原创 传感数据分析——加速度、速度与位移

本文介绍了如何利用Python进行传感器数据分析,重点关注了加速度、速度和位移之间的关系。通过数值积分的方法,可以从加速度数据中计算出速度和位移数据,并通过绘制曲线图来直观展示数据的变化情况。这些分析结果可以帮助我们更好地理解物体的运动状态,为实际应用提供支持。

2024-05-14 13:28:20 863

原创 自动化机器学习——神经网络架构搜索

神经网络架构搜索是一种自动化机器学习技术,旨在通过搜索有效的神经网络结构来解决特定任务。与传统的手工设计神经网络结构相比,NAS通过自动化搜索过程来发现更加高效和精确的神经网络结构,从而提高模型的性能和泛化能力。神经网络架构搜索是一种自动化机器学习技术,旨在通过搜索有效的神经网络结构来解决特定任务。本文介绍了神经网络架构搜索的定义、应用场景与主要的研究方向,以及NAS的工作流程,并通过Python实现示例代码来演示其应用和效果。

2024-05-11 13:30:08 1001

原创 图像质量评价指标:了解图像质量的度量方式

图像质量评价指标是用来量化图像质量的度量方式,它们能够反映图像的清晰度、对比度、失真程度等方面的特征。通过这些指标,我们可以对图像进行客观地评价,从而判断其适用性和可用性。本文介绍了图像质量评价指标的定义以及常见的评价指标,包括均方误差(MSE)、峰值信噪比(PSNR)和结构相似性指数(SSIM)。通过Python实现了一个简单的示例代码来计算并可视化这些指标,帮助读者更好地理解图像质量评价的原理和实现方法。对于图像处理和计算机视觉领域的从业者来说,熟悉和掌握这些评价指标是非常重要的。

2024-05-09 09:04:10 517

原创 图像质量评价方法简介与Python实现

本文介绍了图像质量评价方法中的主观评价和客观评价方法,包括主观评价中的MOS和DMOS,以及客观评价中的全参考图像质量评价(FR-IQA)、半参考图像质量评价(RR-IQA)和无参考图像质量评价(NR-IQA)。通过Python实现了一个简单的示例代码来演示这些评价方法的应用,帮助理解图像质量评价的基本原理和实现过程。

2024-05-09 09:01:59 403

原创 自动化机器学习——贝叶斯优化

贝叶斯优化是一种强大的优化方法,它通过建模目标函数的后验分布来不断地寻找最优解。本文介绍了贝叶斯优化的两个关键步骤:统一建模和获得函数的优化,并提供了一个简单的示例代码来演示其实现过程。贝叶斯优化在实际应用中具有广泛的应用价值,特别是在黑盒函数优化和高维空间搜索等问题中表现突出。

2024-05-07 15:13:36 506

原创 自动化机器学习——获得函数

获得函数,也称为目标函数或损失函数,是在机器学习中用于衡量模型预测值与真实标签之间差异的函数。其形式可以是各种形式的误差度量,例如均方误差、交叉熵等。获得函数的选择直接影响了模型的性能和训练过程中的优化效果。本文介绍了获得函数的定义、作用、常用的获得函数,并通过Python实现了一个简单的线性回归问题示例来演示均方误差的计算和可视化效果。获得函数是机器学习中的重要组成部分,其选择直接影响了模型的性能和训练过程中的优化效果。

2024-05-07 15:12:43 746

原创 自动化机器学习——网格搜索法:寻找最佳超参数组合

在机器学习中,超参数是在模型训练之前需要手动设置的参数,例如学习率、正则化参数、树的数量等。这些超参数的选择对于模型的性能和泛化能力具有重要影响。而网格搜索法是一种通过遍历指定的超参数空间来寻找最佳超参数组合的方法,它通过穷举搜索的方式寻找最优解,是一种简单而有效的超参数调优方法。本文介绍了自动化机器学习中的网格搜索法,通过穷举搜索超参数空间来寻找最佳超参数组合。通过Python实现了一个简单的分类问题示例,并通过可视化展示了网格搜索法的效果。

2024-05-01 21:30:55 859 1

原创 神经网络中常见的激活函数:理解与实践

激活函数是神经网络中的一个关键组件,它决定了神经元的输出是否被激活。在神经网络的每一层中,都会使用激活函数对输入进行非线性变换,从而使得神经网络可以逼近复杂的函数关系。本文介绍了神经网络中常见的9种激活函数,包括它们的概述、公式和用Python实现示例代码,并通过可视化展示了它们的效果。每种激活函数都有其特点和适用场景,选择合适的激活函数对于神经网络的训练和性能至关重要。读者可以根据实际问题的需求和数据的特点,选择合适的激活函数来提高神经网络的性能和效果。

2024-05-01 21:24:55 877

原创 自动化机器学习:让机器学习更智能

自动化机器学习旨在通过利用计算机自动化地搜索和选择合适的机器学习模型及其超参数,以降低人工干预的成本,并提高机器学习模型的性能和泛化能力。模型选择:在众多的机器学习算法中选择最适合特定问题的算法。超参数调优:调整模型的超参数以优化模型的性能。特征工程:自动地从原始数据中提取有效的特征。基于优化算法的方法:利用优化算法如遗传算法、贝叶斯优化等搜索模型和超参数的最优解。基于元学习的方法:通过学习不同数据集上的模型性能,来预测最佳的模型和参数。基于神经网络的方法。

2024-04-28 19:34:01 938

原创 深度学习基础:循环神经网络中的长期依赖问题

在循环神经网络中,信息的传递是通过时间步骤进行的,每个时间步骤的隐藏状态会受到上一步隐藏状态和当前输入的影响。然而,随着时间步的增加,信息会逐渐衰减,导致模型难以捕捉到远距离的依赖关系。这种问题在处理长序列数据时尤为突出,例如在自然语言处理任务中,处理长句子时往往会出现语义理解不准确的情况。长期依赖问题是循环神经网络中的一个重要挑战,但通过引入门控机制、增加网络深度等方法,我们能够有效地解决这个问题。在实际应用中,选择合适的模型结构和调参方法对于解决长期依赖问题非常重要。

2024-04-24 12:51:41 756 2

原创 深度学习基础:循环神经网络中的Dropout

Dropout是一种用于深度学习模型的正则化技术,旨在减少模型的过拟合。它的基本思想是在训练过程中,随机地将一部分神经元的输出置为零,从而减少神经元之间的相互依赖关系,降低模型对特定神经元的依赖性,提高模型的泛化能力。本文介绍了Dropout在深度学习中的基本概念和原理,以及在循环神经网络中如何使用Dropout来解决过拟合问题。通过一个简单的Python示例,我们演示了如何在PyTorch中实现带有Dropout的循环神经网络,并观察了训练过程中的损失变化。

2024-04-24 12:21:06 572 2

原创 深度学习基础——Seq2Seq框架在编码-解码过程中的信息丢失问题及解决方法

在Seq2Seq模型中,编码器将输入序列转换为一个固定长度的向量表示,然后解码器根据该向量表示生成输出序列。然而,由于编码器输出的向量长度固定且有限,可能会导致输入序列中的某些信息在编码过程中丢失,从而影响解码器的生成效果。具体来说,当输入序列较长或包含复杂结构时,编码器可能无法完全捕捉到序列中的所有重要信息,导致一部分信息在编码过程中丢失。这种信息丢失可能导致解码器无法正确地生成输出序列,从而影响模型的性能。本文介绍了深度学习基础中Seq2Seq框架在编码-解码过程中的信息丢失问题,并提出了解决方法。

2024-04-22 12:45:27 593

原创 深度学习基础——循环神经网络的结构及参数更新方式

循环神经网络是一种具有循环连接的神经网络结构,用于处理序列数据,如文本、时间序列等。其主要特点是可以将过去的信息传递到当前时间步,从而在处理序列数据时具有记忆性。

2024-04-22 11:13:03 901

原创 深度学习基础——卷积神经网络的基础模块

批归一化是一种用于神经网络中的技术,旨在减少训练过程中的内部协变量偏移,并且可以作为一个正则化项来降低网络的过拟合程度。通过对每个小批量输入进行归一化,使得网络的输入更加稳定,加快收敛速度,同时提高网络的泛化能力。

2024-04-20 22:54:06 933

原创 深度学习基础——卷积神经网络的感受野、参数量、计算量

在卷积神经网络中,感受野是指一个神经元对输入图像的感知范围。换句话说,它代表了一个神经元能够接收到的输入图像的区域大小。感受野的大小决定了神经元对输入图像的理解能力和特征提取能力。本文介绍了卷积神经网络的三个重要指标:感受野、参数量和计算量。通过定义和计算方法,可以更好地理解和评估深度学习模型的性能和复杂度。通过示例代码的实现和可视化展示,读者可以更直观地了解这些指标的计算过程和意义。在实际应用中,合理设计和优化网络结构可以有效提高模型的性能和效率。

2024-04-20 22:48:37 649

原创 计算机视觉与深度学习

计算机视觉(Computer Vision)是指利用计算机和相应的数字信号处理技术,对从现实世界中获取的图像和视频数据进行理解和分析的研究领域。而深度学习(Deep Learning)是机器学习的一个分支,通过多层神经网络模型学习数据的表示,实现对复杂模式和结构的学习。深度学习技术已经成为了计算机视觉领域的主要驱动力之一,通过深度学习方法可以自动学习到数据的特征表示,从而大大提高了计算机视觉任务的准确性和效率。本文介绍了计算机视觉与深度学习的关联,以及深度学习在计算机视觉中的应用。

2024-04-17 12:24:30 625

原创 深度学习基础——残差神经网络(ResNet)

残差神经网络(ResNet)是一种深度神经网络结构,由微软研究院的Kaiming He等人于2015年提出。它通过引入残差块(Residual Block)来解决深度神经网络的退化问题,使得网络可以更深地进行训练。ResNet在ImageNet图像识别挑战赛上取得了第一名的成绩,并在许多领域取得了显著的成功应用。

2024-04-17 12:16:47 1208

原创 深度学习基础——计算量、参数量和推理时间

计算量(FLOPs):指的是在模型的前向传播过程中进行的浮点运算的数量。FLOPs越多,说明模型的计算复杂度越高,需要更多的计算资源来完成推理任务。参数量(Params):指的是模型中需要学习的参数的数量。参数量越多,模型的表达能力越强,但也容易导致过拟合和计算负担。推理时间(FPS):指的是模型在推理阶段处理一个样本所需的时间,通常以每秒处理的样本数来衡量模型的推理速度。FPS越高,说明模型的推理效率越高。计算量、参数量和推理时间是评估深度学习模型性能和效率的重要指标。

2024-04-13 17:21:57 739

原创 机器学习——模型评价

模型评价是机器学习中至关重要的一环,它能够帮助我们全面理解和评估模型的性能,为模型的改进和优化提供指导。在选择合适的评价方法时,需要根据具体问题和数据特点进行综合考虑,综合利用不同的评价指标,以全面客观地评价模型的性能。通过本文的介绍和示例代码,希望读者能够更加深入地理解模型评价的概念、方法和应用。

2024-04-13 17:10:00 1155

原创 机器学习——模型融合:Blending算法

在机器学习领域,模型融合(Ensemble Learning)是一种强大的技术,通过结合多个模型的预测结果来提高模型性能。Blending算法是模型融合的一种常见方法,它利用一个或多个基本模型进行预测,然后使用另一个模型(元模型)将这些基本模型的预测结果结合起来。在本文中,将介绍Blending算法的核心思想、基本流程、常见的Blending方法以及其优缺点,并用Python实现一个简单的Blending算法,并通过可视化展示结果。

2024-04-11 12:46:13 976

原创 机器学习——模型融合:Stacking算法

Stacking算法是一种强大的模型融合技术,通过组合多个基本分类器的预测结果来提高整体的预测性能。它可以灵活地选择不同的初级学习器和次级学习器,并且可以提高模型的泛化能力和鲁棒性。然而,Stacking算法也有一些缺点,例如训练时间较长,对初级学习器的选择和参数调优要求较高等。在实际应用中,需要根据具体的问题和数据集来选择合适的Stacking方法,并进行适当的调优工作。

2024-04-11 12:39:22 1535

原创 机器学习——模型融合:Boosting算法

Boosting算法通过组合多个弱学习器来构建一个强学习器,能够提高模型的泛化能力。常见的Boosting方法包括AdaBoost、Gradient Boosting、XGBoost、LightGBM和CatBoost等。Boosting方法在实际应用中取得了很好的效果,但也需要注意训练时间较长和对异常值敏感等缺点。

2024-04-09 14:05:02 1094

原创 机器学习——模型融合:Bagging抽样法

模型融合是一种集成学习方法,通过结合多个模型的预测结果来提高整体模型的性能和鲁棒性。它是一种常见的机器学习策略,被广泛应用于分类、回归等问题中。模型融合的基本思想是利用多个模型的优势互补,通过集成它们的预测结果来获得更准确、更稳定的预测。Bagging抽样法是一种有效的模型融合方法,通过对训练数据的随机抽样和组合,能够提高集成模型的性能和泛化能力。它通过引入随机性来减小模型之间的相关性,从而降低了集成模型的方差,并且能够有效地捕获数据的复杂性。

2024-04-09 08:29:09 952

原创 机器学习——模型融合:平均法

模型融合是指将多个基本模型的预测结果进行合并,得到最终的预测结果。模型融合通常在机器学习竞赛和实际项目中广泛应用,例如Kaggle竞赛中常见的集成学习技术。模型融合的核心思想是“三个臭皮匠,顶个诸葛亮”,通过组合多个模型的优点,来弥补单个模型的缺点,从而提高整体预测的性能。本文介绍了模型融合中的一种简单而有效的方法:平均法。平均法通过对多个基本模型的预测结果进行加权平均来得到最终的预测结果,能够降低预测的方差,提高模型的鲁棒性,并在一定程度上提高预测的准确性。

2024-04-07 08:57:44 1623

原创 机器学习——典型的卷积神经网络

本文介绍了三种典型的卷积神经网络:LeNet-5、AlexNet和ResNet。这些网络在图像分类、目标检测和语义分割等计算机视觉任务中取得了巨大成功。它们的设计思想和结构各不相同,但都为深度学习在图像处理领域的发展做出了重要贡献。

2024-04-04 23:04:59 685

原创 机器学习——卷积神经网络的反向传播算法

本文介绍了卷积神经网络的反向传播算法,包括汇聚层、卷积层以及反向传播算法的基本概念和步骤,并通过Python实现了简单的反向传播算法。反向传播算法是训练卷积神经网络的关键步骤之一,掌握其原理和实现方法对深度学习的学习和应用具有重要意义。

2024-04-03 09:03:36 1047

原创 概率论基础——拉格朗日乘数法

拉格朗日乘数法是解决带约束条件的优化问题的重要方法之一。通过引入拉格朗日乘子,我们可以将原始问题转化为无约束问题,并通过求解新的拉格朗日函数的极值点来得到原始问题的解。然而,拉格朗日乘数法并不保证得到全局最优解,因此在实际应用中需要结合其他方法进行优化。

2024-04-02 09:27:53 2249 1

原创 机器学习——卷积神经网络中的其他类型

卷积神经网络(Convolutional Neural Networks, CNNs)是深度学习领域中最重要的技术之一,它在图像处理、语音识别、自然语言处理等领域取得了巨大成功。在CNN中,卷积层是最核心的组成部分之一,而卷积操作又有许多不同类型,本文将重点介绍其中的两种特殊类型:空洞卷积和转置卷积。

2024-04-02 08:34:38 1446 1

原创 机器学习——卷积的变种

卷积神经网络(Convolutional Neural Networks, CNNs)是深度学习领域中最重要的技术之一,它在图像处理、语音识别、自然语言处理等领域取得了巨大成功。在CNN中,卷积层是最核心的组成部分之一,而卷积操作有许多不同的变种,本文将简单介绍窄卷积、宽卷积和等宽卷积这三种常见的卷积变种。

2024-04-01 09:01:21 651

原创 机器学习——卷积基础

本文介绍了卷积的基本概念、组成部分和方法,并通过Python示例代码演示了简单的卷积操作。卷积在机器学习中有着广泛的应用,特别是在图像处理和深度学习领域,对理解卷积的原理和应用场景有助于更深入地理解机器学习算法。

2024-04-01 08:51:10 726

粒子滤波:Python实现

粒子滤波:Python实现

2024-01-18

传感数据分析-傅里叶滤波与小波滤波对比

传感数据的傅里叶滤波与小波滤波对比Python实现,内附完整代码

2024-01-09

传感数据分析-小波滤波

传感一维数据的小波滤波Python实现,内附完整代码

2024-01-08

传感数据分析-自适应Kalman滤波

自适应Kalman滤波Python实现,内附完整代码

2024-01-04

传感数据分析-Kalman滤波

Kalman滤波Python实现,内附完整代码

2024-01-03

传感数据分析-EMA滤波

基于EMA滤波Python实现,内附完整代码

2024-01-02

传感数据分析-中值滤波和均值滤波

基于滑动窗口的中值滤波和均值滤波Python实现,内附完整代码

2023-12-26

传感数据分析-Permutation Entropy Weight Method(排列熵权法)

排列熵权法的Python实现,内附完整代码,可改为自己的数据集

2023-12-25

传感数据分析-Fuzzy Entropy Weight Method(模糊熵权法)

模糊熵权法的Python实现,内附完整代码,可改为自己的数据集

2023-12-23

传感数据分析-Sample Entropy Weight Method(样本熵权法)

样本熵权法的Python实现,内附完整代码,可改为自己的数据集

2023-12-22

传感数据分析-Approximate Entropy Weight Method(近似熵权法)

Python实现近似熵权法,内附数据集

2023-12-21

传感数据分析-TOPSIS-Entropy Weight Method

"topsis_EWM_demo.py" 为TOPSIS-Entropy熵权法主程序 requirement.txt 中为所需库,可以通过命令 pip install -r requirement.txt 下载; 运行环境为: Python 3.8, Ubuntu 20.04/Windows 10

2023-12-20

传感数据分析-Entropy Weight Method (熵权法)

"entropy_weight_method_demo.py" 为熵权主程序,结果保存到result文件夹下 requirement.txt 中为所需库,可以通过命令 pip install -r requirement.txt 下载; 运行环境为: Python 3.8, Ubuntu 20.04/Windows 10

2023-12-19

传感数据分析-最小二乘法线性拟合(Least Squares)

最小二乘法自写函数实现; 原数据用散点图表示,拟合后数据用直线绘制; 以浅层含水率和深层含水率为例; requirement.txt 中为所需库,可以通过命令 pip install -r requirement.txt 下载; 运行环境为: Python 3.8, Ubuntu 20.04/Windows 10

2023-12-18

传感数据分析-数据相关性分析

传感数据分析——相关性分析热力图绘制: 对三类相关系数进行了求取,结果图保存在Figure文件夹下,相关系数结果保存在result文件夹下; 测试数据集为实验中传感器所得到的数据,包括含水率传感器、土压力传感器以及位移传感器数据,代码为本人所写

2023-12-17

传感数据分析-数据读取与绘图(可视化)

传感数据分析——数据曲线图绘制: 双坐标曲线图绘制,横坐标为千分位显示,纵坐标分为左坐标和右坐标; 测试数据集为实验中传感器所得到的数据,包括含水率传感器、土压力传感器以及位移传感器数据,代码为本人所写

2023-12-16

改进GRNN用于滑坡稳定度预测

本程序为本人改进GRNN,用于滑坡稳定度预测; 相关数据集为本实验平台实验采集; 代码均为本人所写。

2022-06-19

用MATLAB自带函数实现简单的OCR

用MATLAB自带函数实现简单的OCR

2022-03-15

office中英文字号对照表

写论文、报告等对应的中英文字号对照表

2022-03-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除