无迹卡尔曼滤波(Unscented Kalman Filter, UKF):理论和应用
卡尔曼滤波是一种强大的状态估计方法,广泛应用于控制系统、导航、机器人等领域。然而,传统的卡尔曼滤波假设系统是线性的,而在实际应用中,许多系统具有非线性特性。为了解决这一问题,无迹卡尔曼滤波(Unscented Kalman Filter, UKF)应运而生,它通过采用无迹变换来处理非线性系统。
线性卡尔曼滤波和扩展卡尔曼滤波中相关公式不再重复。
1. 无迹卡尔曼滤波的理论基础
1.1 状态空间模型
无迹卡尔曼滤波是一种基于非线性状态空间模型的滤波器。系统的状态方程和测量方程可以表示为:
状态方程:
x
k
=
f
(
x
k
−
1
,
u
k
)
+
w
k
\begin{equation} x_k = f(x_{k-1}, u_k) + w_k \end{equation}
xk=f(xk−1,uk)+wk
测量方程:
z
k
=
h
(
x
k
)
+
v
k
\begin{equation}z_k = h(x_k) + v_k \end{equation}
zk=h(xk)+vk
其中, x k x_k xk 是系统的状态向量, u k u_k uk是系统的控制输入, z k z_k zk是测量向量, f f f 和 h h h 是非线性的状态转移和测量函数,而 w k w_k wk 和 v k v_k vk是过程噪声和测量噪声。
1.2 无迹变换
无迹卡尔曼滤波的核心思想是使用无迹变换,通过选择一组称为sigma点的特殊采样点来近似非线性函数的统计性质。这些sigma点是通过对系统状态的均值和协方差进行线性变换得到的。
对于一个
n
n
n维状态向量
x
x
x,无迹变换可以生成
2
n
+
1
2n+1
2n+1个
s
i
g
m
a
sigma
sigma点,即:
X
=
[
x
,
x
+
(
n
+
λ
)
P
,
x
−
(
n
+
λ
)
P
]
\begin{equation}X = [x, x + \sqrt{(n+\lambda)P}, x - \sqrt{(n+\lambda)P}] \end{equation}
X=[x,x+(n+λ)P,x−(n+λ)P]
其中, P P P 是状态的协方差矩阵, λ \lambda λ是一个与系统维度有关的可调参数。
1.3 无迹卡尔曼滤波算法步骤
-
初始化: 初始化系统状态估计和协方差矩阵。
-
生成sigma点: 使用当前状态估计和协方差矩阵生成sigma点。
-
状态预测: 对每个 s i g m a sigma sigma点进行状态转移,得到预测状态。
-
计算预测均值和协方差: 根据预测状态计算均值和协方差。
-
生成预测测量sigma点: 使用预测状态的均值和协方差生成预测测量的sigma点。
-
计算预测测量均值和协方差: 根据预测测量的sigma点计算均值和协方差。
-
计算卡尔曼增益: 利用预测的协方差、测量的协方差以及卡尔曼增益的计算公式。
-
更新状态估计: 利用卡尔曼增益进行状态更新。
-
更新协方差: 利用卡尔曼增益进行协方差更新。
-
返回步骤2: 重复以上步骤直至滤波结束。
2. 无迹卡尔曼滤波与其他卡尔曼滤波的对比
2.1 与线性卡尔曼滤波的对比
- 无迹卡尔曼滤波不需要对非线性函数进行线性化,因此更适用于非线性系统。
- 避免了雅可比矩阵的计算和使用,简化了算法实现。
2.2 与扩展卡尔曼滤波的对比
- 无迹卡尔曼滤波通过sigma点直接近似非线性函数,避免了对雅可比矩阵的计算和使用,相比扩展卡尔曼滤波更为直观。
- 不容易受到非线性函数选取不当导致的不稳定性问题。
3. 无迹卡尔曼滤波的Python代码示例
一维非线性系统
import numpy as np
def ukf_predict(state_mean, state_covariance, process_noise_covariance, alpha=1e-3, beta=2.0, kappa=0.0):
n = len(state_mean)
lambda_ = alpha**2 * (n + kappa) - n
# Generate sigma points
sigma_points = np.zeros((2 * n + 1, n))
sigma_points[0] = state_mean
sigma_points[1:n+1] = state_mean + np.sqrt(n + lambda_) * np.linalg.cholesky(state_covariance).T
sigma_points[n+1:2*n+1] = state_mean - np.sqrt(n + lambda_) * np.linalg.cholesky(state_covariance).T
# Predict sigma points through the process model
predicted_sigma_points = np.zeros((2 * n + 1, n))
for i in range(2 * n + 1):
# Replace this line with your process model function
predicted_sigma_points[i] = sigma_points[i] # Example: identity process model
# Predicted state mean and covariance
predicted_state_mean = np.sum(predicted_sigma_points, axis=0) / (2 * n + 1)
state_covariance_residual = predicted_sigma_points - predicted_state_mean
predicted_state_covariance = (state_covariance_residual.T @ np.diag([1.0 / (2 * n + 1)] * (2 * n + 1)) @ state_covariance_residual
+ process_noise_covariance)
return predicted_state_mean, predicted_state_covariance
# Example usage
initial_state_mean = np.array([0.0, 0.0])
initial_state_covariance = np.eye(2)
process_noise_covariance = np.eye(2) * 1e-3
predicted_state_mean, predicted_state_covariance = ukf_predict(initial_state_mean, initial_state_covariance, process_noise_covariance)
print("Predicted State Mean:", predicted_state_mean)
print("Predicted State Covariance:", predicted_state_covariance)
在以上示例代码中,我们演示了无迹卡尔曼滤波。这些示例代码可以作为理解和实现无迹卡尔曼滤波的起点,并根据实际问题进行调整。无迹卡尔曼滤波在处理非线性系统时展现出了良好的性能,是一种强大的状态估计方法。
4.结论
无迹卡尔曼滤波(Unscented Kalman Filter, UKF)是卡尔曼滤波的一种扩展,主要用于处理非线性系统。通过使用无迹变换,UKF能够更准确地估计非线性系统的状态,并避免了对雅可比矩阵的线性化要求。以下是对UKF的优点和缺点的综合结论:
优点:
-
无需雅可比矩阵: 与扩展卡尔曼滤波(EKF)不同,UKF不需要对非线性函数进行雅可比矩阵的计算,使得算法更为简化,同时减小了实现的复杂度。
-
适用于高度非线性系统: UKF对高度非线性的系统具有更好的适应性。通过采样一组sigma点,UKF直接近似了非线性函数的统计性质,更准确地捕捉系统的非线性特性。
-
避免发散问题: 与EKF相比,UKF更不容易受到非线性函数选取不当导致的不稳定性问题,提高了滤波的鲁棒性。
-
不限于高斯分布: UKF对状态变量的分布形状没有特殊的假设,因此在处理非高斯分布的情况下更为灵活。
缺点:
-
计算成本较高: 与标准的卡尔曼滤波相比,UKF的计算成本相对较高。生成sigma点和进行非线性函数的传播都需要更多的计算资源。
-
对初始条件敏感: UKF对初始条件比较敏感,初始估计的不准确性可能会影响滤波的性能。
-
不适用于所有非线性系统: 尽管UKF适用于大多数非线性系统,但对于某些极端非线性或高度噪声的系统,UKF可能也无法取得很好的效果。
总体而言,UKF在处理非线性系统时表现出色,尤其适用于具有复杂非线性特性的系统。然而,对于一些简单且低维的系统,标准的卡尔曼滤波可能更为合适,因为它具有更低的计算成本。选择合适的滤波器应基于具体问题的特征和需求。