python加权最小二乘_解决异方差问题--加权最小二乘法

博客介绍了在建模时常见的异方差问题,当Ordinary Least Squares (OLS)不满足同方差假设时,需用加权最小二乘法(WLS)处理。通过Python代码给出WLS实例,展示其对不同异常值的处理效果,最后总结在WLS领域还有很多可探索之处。

异方差问题

Ordinary Least Squares (OLS) 需要四个 - -有些人说五或六个 - 假设要满足,但建模时我们经常会遇到异方差(Heteroskedasticity)问题,

那是因为,很多数据都表现出这种“异方差性”。我们通常可以直观地解释原因:

随着年龄的增长,净值往往会出现分歧

随着公司规模的扩大,收入趋于分化

或者,随着婴儿身高的增加,体重趋于分散

OLS的主要假设之一是数据的残差相同的,当不满足同方差的假设时,即存在异方差时候,我们需要另外的方法--加权最小二乘法(WLS)去处理。

WLS实例

importnumpy as npimportpandas as pdimportseaborn as snsimportstatsmodels.api as sm#generate random data

np.random.seed(24)

x= np.random.uniform(-5,5,25)

e= 2*np.random.randn(25)

y= 2*x+e

#alternate error as a function of x

e2 = e*(x+5)

y2= 2*x+e2

sns.regplot(x,y);

sns.regplot(x,y2);

可以看到,这些集合来自相同的实例函数,但是作为x的函数的增加的方差导致橙色模型拟合不同于蓝色的线。 在另一个随机抽取中,斜率可能低于蓝色,但一般会更加不稳定。

#add a strong outlier for high x

x_high = np.append(x,5)

y_high= np.append(y2,160)#add a strong outlier for low x

x_low = np.append(x,-4)

y_low= np.append(y2,160)

sns.regplot(x_high,y_high);

sns.regplot(x_low,y_low);

上面的第一个附加模仿了一个常见的情况,即高方差区域(预期)会看到极端观察。 这将比WLS更多地影响OLS,因为WLS将减去方差及其“惩罚”。

计算样本权重,我们添加的错误随(x + 5)的变化而变化; 我们可以使用它来对值进行反向加权。

#calculate weights for sets with low and high outlier

sample_weights_low = [1/(x+5) for x inx_low]

sample_weights_high= [1/(x+5) for x in x_high]

#reshape for compatibility

X_low = x_low.reshape(-1, 1)

X_high= x_high.reshape(-1, 1)#import and fit an OLS model, check coefficients

from sklearn.linear_model importLinearRegression

model=LinearRegression()

model.fit(X_low, y_low)#fit WLS using sample_weights

WLS =LinearRegression()

WLS.fit(X_low, y_low, sample_weight=sample_weights_low)print(model.intercept_, model.coef_)print('WLS')print(WLS.intercept_, WLS.coef_)

需要注意的是,WLS中的斜率受到低异常值的影响。 低区域应该具有低可变性,因此异常值被放大到高于OLS的范围,推动斜率更负。 让我们看下面如何在WLS中抑制高异常值。

model =LinearRegression()

model.fit(X_high, ymod)

WLS.fit(X_high, ymod, sample_weight=sample_weights_high)print(model.intercept_, model.coef_)print('WLS')print(WLS.intercept_, WLS.coef_)

总结

这是WLS的一个基本介绍,在这个领域还有很多东西要探索。例如:在建模时始终寻求使用经验或先验信息。使用模型的残差 - 例如,如果var(εi)=σ2x_i* var(εi)=σ2x_i  那么我们可以决定使用w_i = 1 / x_i。

如果响应是n观察的平均值,则类似var(y_i)= var(ε_i)=σ2/ n_i * var(y_i)= var(ε_i)=σ2/ n_i,那么我们可以决定使用w_i = n_i。

有时我们知道异方差的类型。在这种情况下,我们可能决定使用权重与测量误差的方差成反比。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值