堆排序时间复杂度_图解堆结构、堆排序及堆的应用

前言

这次我们介绍另一种时间复杂度为 O(nlogn) 的选择类排序方法叫做堆排序。

我将从以下几个方面介绍:

  • 堆的结构
  • 堆排序
  • 优化的堆排序
  • 原地堆排序
  • 堆的应用

堆的结构

什么是堆?我给出了百度的定义,如下:

堆(Heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵 完全二叉树 的数组对象。

堆总是满足下列性质:

  • 堆中某个节点的值总是不大于或不小于其父节点的值。
  • 堆总是一棵完全二叉树。

将根节点最大的堆叫做最大堆,根节点最小的堆叫做最小堆。

下图展示了一个最大堆的结构:

793b8797e183b4e97563ca88a66ff834.png

可见,堆中某个节点的值总是小于等于其父节点的值。

由于堆是一棵完全二叉树,因此我们可以对每一层进行编号,如下:

f67fd43a1707b9f9da88c9ff8a1637f8.png

我们完全可以使用数组存放这些元素,那如何确定存放的位置呢?利用如下公式:

父节点:parent(i) = (i-1)/2

左孩子:leftChild(i) = 2*i+1
右孩子:rightChild(i) = 2*i+2

相关代码如下:

private int parent(int index) {    return (index - 1) / 2;}private int leftChild(int index) {    return index * 2 + 1;}private int rightChild(int index) {    return index * 2 + 2;}

添加元素

向堆中添加元素的步骤如下:

  1. 将新元素放到数组的末尾。
  2. 获取新元素的父亲节点在数组中的位置,比较新元素和父亲节点的值,如果父亲节点的值小于新元素的值,那么两者交换。以此类推,不断向上比较,直到根节点结束。

下图展示了添加元素的过程:

83467ada2791fe5cec60093e52890f20.png

添加元素的过程也叫做 siftUp ,代码如下:

// Array是自己实现的动态数组private Array data;public void add(E e) {    data.addLast(e);    siftUp(data.getSize() - 1);}private void siftUp(int k) {    while (k > 0 && data.get(parent(k)).compareTo(data.get(k)) < 0) {        data.swap(k, parent(k));        k = parent(k);    }}

删除元素

删除元素其实就是删除堆顶的元素,步骤如下:

  1. 让数组最后一个元素和数组第一个元素(堆顶元素)交换。
  2. 交换完后,删除数组最后的元素。
  3. 让堆顶元素和左右孩子节点比较,如果堆顶元素比左右孩子节点中最大的元素还要大,那么满足堆的性质,直接退出。否则如果堆顶元素比左右孩子节点中最大的元素小,那么堆顶元素就和最大的元素交换,然后继续重复执行以上操作,只不过这时候把堆顶元素称为父节点更好。

下图展示了删除元素的过程:

b993f0db5ed5c83cbe786081e03e371b.png

删除元素的过程也叫做 siftDown ,代码如下:

// 这里我们不命名为remove,命名为extractMax,抽取堆顶最大元素public E extractMax() {    E ret = findMax();    // 让最后一个叶子节点补到根节点,然后让它下沉    // (为什么是取最后一个叶子节点,因为即使取走最后一个叶子节点,依旧能保持是一棵完全二叉树)    data.swap(0, data.getSize() - 1);    data.removeLast();    siftDown(0);    return ret;}private void siftDown(int k) {    while (leftChild(k) < data.getSize()) {        int j = leftChild(k);        if (j + 1 < data.getSize() && data.get(j + 1).compareTo(data.get(j)) > 0) {            j = rightChild(k);            // data[j]是leftChild和rightChild中的最大值        }        // 如果父节点比左右孩子中的最大值还要大,那么说明没有问题,直接退出        if (data.get(k).compareTo(data.get(j)) >= 0) {            break;        }        // 否则交换        data.swap(k, j);        k = j;    }}

最大堆的完整代码

堆排序

通过上面的介绍,我们应该明白了堆的结构,堆的添加和删除元素操作是如何完成的。那么对于堆排序来说,就是小菜一碟了,因为堆排序就是用到了堆的添加和删除操作,步骤如下:

  1. 将数组中元素一个个添加到堆(最大堆)中。
  2. 添加完成后,每次取出一个元素倒序放入到数组中。

堆排序代码:

public static void sort(Comparable[] arr) {    int n = arr.length;    // MaxHeap是自己实现的最大堆    MaxHeap maxHeap = new MaxHeap<>(n);    for (int i = 0; i < n; i++) {        maxHeap.add(arr[i]);    }    for (int i = n - 1; i >= 0; i--) {        arr[i] = maxHeap.extractMax();    }}

堆排序完整代码

优化的堆排序

在上述的堆排序中,我们在将数组中元素添加到堆时,都是一个个添加,是否有优化的方法呢?答案是有的,我们可以将数组直接转换成堆,这种操作叫做 Heapify 。

Heapify 就是从最后一个节点开始,判断父节点是否比孩子节点大,不是就 siftDown 。 Heapify 操作的时间复杂度是 O(n) ,相比一个个添加的时间复杂度是 O(nlogn) ,可见性能提升了不少。

假设我们有数组: [15, 18, 12, 16, 22, 28, 16, 45, 30, 52] ,下图展示了对其进行 Heapify 的过程。

a170a8d7976f8884b82fb0a707d2f1d5.png

优化的堆排序代码:

public static void sort(Comparable[] arr) {    int n = arr.length;    // MaxHeap是自己实现的最大堆,当传入数组作为构造参数时,会对其进行heapify    MaxHeap maxHeap = new MaxHeap<>(arr);    for (int i = n - 1; i >= 0; i--) {        arr[i] = maxHeap.extractMax();    }}// 构造方法public MaxHeap(E[] arr) {    data = new Array<>(arr);    // 将数组堆化的过程就是从最后一个节点开始,判断父节点是否比子节点大,不是就siftDown    for (int i = parent(arr.length - 1); i >= 0; i--) {        siftDown(i);    }}

优化的堆排序完整代码

原地堆排序

原地堆排序可以让我们的空间复杂度变为 O(1) ,因为不占用新的数组。

原地堆排序类似于堆的删除元素,步骤如下:

HeapifysiftDownsiftDown

下图展示了原地堆排序的过程:

6e991258bf5bf7838477b4ac0e00614a.png

原地堆排序代码:

public static void sort(Comparable[] arr) {    int n = arr.length;    // heapify    for (int i = parent(n-1); i >= 0; i--) {        siftDown(arr, n, i);    }    // 核心代码    for (int i = n - 1; i > 0; i--) {        swap(arr, 0, i);        siftDown(arr, i, 0);    }}private static void swap(Object[] arr, int i, int j) {    Object t = arr[i];    arr[i] = arr[j];    arr[j] = t;}private static void siftDown(Comparable[] arr, int n, int k) {    while (leftChild(k) < n) {        int j = leftChild(k);        if (j + 1 < n && arr[j + 1].compareTo(arr[j]) > 0) {            j = rightChild(k);        }        // 如果父节点比左右孩子中的最大值还要大,那么说明没有问题,直接退出        if (arr[k].compareTo(arr[j]) >= 0) {            break;        }        // 否则交换        swap(arr, k, j);        k = j;    }}

原地堆排序完整代码

堆的应用

优先级队列

一旦我们掌握了堆这个数据结构,那么优先级队列的实现就很简单了,只需要弄清楚优先级队列需要有哪些接口就行。JDK 中自带的 PriorityQueue 就是用堆实现的优先级队列,不过需要注意 PriorityQueue 内部使用的是最小堆。

优先级队列完整代码

Top K 问题

Top K 问题就是求解 前 K 个 最大的元素或者最小的元素。元素个数不确定,数据量可能很大,甚至源源不断到来,但需要知道目前为止前 K 个最大或最小的元素。当然问题还可能变为求解 第 K 个 最大的元素或最小的元素。

通常我们有如下解决方案:

  1. 使用JDK中自带的排序,如 Arrays.sort() ,由于底层使用的快速排序,所以时间复杂度为 O(nlogn) 。但是如果 K 取值很小,比如是 1,即取最大值,那么对所有元素排序就没有必要了。
  2. 使用简单选择排序,选择 K 次,那么时间复杂度为 O(n*K) ,如果 K 大于 logn,那还不如快排呢!

上述两种思路都是假定所有元素已知,如果元素个数不确定,且数据源源不断到来的话,就无能为力了。

下面提供一种新的思路:

我们维护一个长度为 K 的数组,最前面 K 个元素就是目前最大的 K 个元素,以后每来一个新元素,都先找数组中的最小值,将新元素与最小值相比,如果小于最小值,则什么都不变,如果大于最小值,则将最小值替换为新元素。这样一来,数组中维护的永远是最大的 K 个元素,不管数据源有多少,需要的内存开销都是固定的,就是长度为 K 的数组。不过,每来一个元素,都需要找到最小值,进行 K 次比较,是否有办法能减少比较次数呢?

当然,这时候堆就要登场了,我们使用最小堆维护这 K 个元素,每次来新的元素,只需要和根节点比较,小于等于根节点,不需要变化,否则用新元素替换根节点,然后 siftDown 调整堆即可。此时的时间复杂度为 O(nlogK) ,相比上述两种方法,效率大大提升,且空间复杂度也大大降低。

Top K 问题代码:

public class TopK> {    private PriorityQueue p;    private int k;    public TopK(int k) {        this.k = k;        this.p = new PriorityQueue<>(k);    }    public void addAll(Collection extends E> c) {        for (E e : c) {            add(e);        }    }    public void add(E e) {        // 未满k个时,直接添加        if (p.size() < k) {            p.add(e);            return;        }        E head = p.peek();        if (head != null && head.compareTo(e) >= 0) {            // 小于等于TopK中的最小值,不用变            return;        }        // 否则,新元素替换原来的最小值        p.poll();        p.add(e);    }    /**     * 获取当前的最大的K个元素     *     * @param a   返回类型的空数组     * @param      * @return TopK以数组形式     */    public E[] toArray(E[] a) {        return p.toArray(a);    }    /**     * 获取第K个最大的元素     *     * @return 第K个最大的元素     */    public E getKth() {        return p.peek();    }    public static void main(String[] args) {        TopK top5 = new TopK<>(5);        top5.addAll(Arrays.asList(88, 1, 5, 7, 28, 12, 3, 22, 20, 70));        System.out.println("top5:" + Arrays.toString(top5.toArray(new Integer[0])));        System.out.println("5th:" + top5.getKth());    }}

这里我们直接利用 JDK 自带的由最小堆实现的优先级队列 PriorityQueue 。

依此思路,可以实现求前 K 个最小元素,只需要在实例化 PriorityQueue 时传入一个反向比较器参数,然后更改 add 方法的逻辑。

中位数

堆也可以用于求解中位数,数据量可能很大且源源不断到来。

注意:如果元素个数是偶数,那么我们假定中位数取任意一个都可以。

有了上面的例子,这里就很好理解了。我们使用两个堆,一个最大堆,一个最小堆,步骤如下:

  1. 添加的第一个元素作为中位数 m,最大堆维护 <= m 的元素,最小堆维护 >= m 的元素,两个堆都不包含 m。
  2. 当添加第二个元素 e 时,将 e 与 m 比较,若 e <= m,则将其加入到最大堆中,否则加入到最小堆中。
  3. 如果出现最小堆和最大堆的元素个数相差 >= 2,则将 m 加入元素个数少的堆中,然后让元素个数多的堆将根节点移除并赋值给 m。
  4. 以此类推不断更新。

假设有数组 [20, 30, 40, 50, 2, 4, 3, 5, 7, 8, 10] 。

下图展示了整个操作的过程:

bd30b451dd8b097dbe19091b236ee1ef.png

求解中位数的代码:

public class Median> {    /**     * 最小堆     */    private PriorityQueue minP;    /**     * 最大堆     */    private PriorityQueue maxP;    /**     * 当前中位数     */    private E m;    public Median() {        this.minP = new PriorityQueue<>();        this.maxP = new PriorityQueue<>(11, Collections.reverseOrder());    }    private int compare(E e, E m) {        return e.compareTo(m);    }    public void addAll(Collection extends E> c) {        for (E e : c) {            add(e);        }    }    public void add(E e) {        // 第一个元素        if (m == null) {            m = e;            return;        }        if (compare(e, m) <= 0) {            // 小于等于中值,加入最大堆            maxP.add(e);        } else {            // 大于中值,加入最大堆            minP.add(e);        }        if (minP.size() - maxP.size() >= 2) {            // 最小堆元素个数多,即大于中值的数多            // 将 m 加入到最大堆中,然后将最小堆中的根移除赋给 m            maxP.add(m);            m = minP.poll();        } else if (maxP.size() - minP.size() >= 2) {            minP.add(m);            m = maxP.poll();        }    }    public E getMedian() {        return m;    }    public static void main(String[] args) {        Median median = new Median<>();        median.addAll(Arrays.asList(20, 30, 40, 50, 2, 4, 3, 5, 7, 8, 10));        System.out.println(median.getMedian());    }}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值