堆排序的介绍
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是 完全二叉树。
- 完全二叉树:除了最后一层之外的其他每一层都被完全填充,每一层从左到右的填充数据,不能空缺
- 大根堆:任意一个节点的值均大于等于它的左右孩子的值,位于堆顶的节点值最大
- 小根堆:任意一个节点的值均小于等于它的左右孩子的值,位于堆顶的节点值最小
本节分享的堆排序以大根堆为例子,大根堆的图示
讲解铺垫(及其重要)
实际上要排序的是一个数组 int[] arr={3, 4, 5, 6, 7, 0, 2, 9, 8},上面的堆是我们幻想出来的,然后知道了arr数组的下标 i 后,我们可以得出它的父节点是(i-1)/ 2,它的左孩子是2*i+1,它的右孩子是2*i+2。
堆排序的实现步骤
- 把一个数组调整为大根堆(heapInsert)
假设当前节点的下标为i,那么它的父亲节点为(i-1)/2,每次heapInsert的时候就把insert进来的节点与它的父亲节点进行比较,比它的父节点大就交换,一直重复调整 - 每次把堆顶放到最后的节点位置,然后调整整个堆为大根堆(heapify)
每次把堆顶的节点放到最后,然后堆大小减1,然后调整为大根堆,一直重复,直到大根堆的大小为0为止
代码实现
import java.util.Arrays;
/**
* @author god-jiang
* @date 2020/1/10
*/
public class HeapSort {
//heapInsert就是建立大根堆
public static void heapInsert(int[] arr, int index) {
while (arr[index] > arr[(index - 1) / 2]) {
swap(arr, index, (index - 1) / 2);
index = (index - 1) / 2;
}
}
//heapify就是把堆顶和最后一个数交换位置,然后堆的大小size--
public static void heapify(int[] arr, int index, int size) {
int left = 2 * index + 1;
while (left < size) {
int largest = left + 1 < size && arr[left + 1] > arr[left] ? left + 1 : left;
largest = arr[index] > arr[largest] ? index : largest;
if (largest == index)
break;
swap(arr, index, largest);
index = largest;
left = 2 * index + 1;
}
}
//交换两个数
public static void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
//主函数
public static void main(String[] args) {
int[] arr = {3, 4, 5, 6, 7, 0, 1, 2, 9, 8};
int size = arr.length;
for (int i = 0; i < size; i++) {
heapInsert(arr, i);
}
swap(arr, 0, --size);
while (size > 0) {
heapify(arr, 0, size);
swap(arr, 0, --size);
}
System.out.println(Arrays.toString(arr));
}
}
运行截图
总结
堆排序是排序算法里面比较经典的一个算法吧,它的时间复杂度为O(N*logN)。建立堆的时间复杂度为O(N),然后堆的调整每步都是O(logN),所以进行了heapify之后就是O(N*logN)。以上就是我对堆排序的整个过程的理解。
PS:觉得博主写的不错的点点赞,关注走一波,谢谢大家的支持了
最近有关注者反应说堆排序的heapInsert和heapify代码没有注释,有点懵,加了点注释,有什么建议都可以直接提,毕竟人非圣贤,肯定会写错的,嘿嘿~~~