pytorch增加一维_WaveNet的Pytorch实现

时间序列数据通常出现在不同的领域,如经济、商业、工程和许多其他领域,并且可以有不同的应用。使用机器学习进行时间序列建模已经成为新的发展趋势。主要的任务目标包括异常检测和回归预测。递归神经网络(RNNs)和卷积神经网络(CNNs)在时间序列建模问题上取得了良好结果。 CNN应用于时间序列的代表即TCN,又被称为因果卷积。TCN与RNNs相比,具有如下的优势: ...
摘要由CSDN通过智能技术生成

52cb3f3bf100a2b28ae780ecdcf02777.png

时间序列数据通常出现在不同的领域,如经济、商业、工程和许多其他领域,并且可以有不同的应用。使用机器学习进行时间序列建模已经成为新的发展趋势。主要的任务目标包括异常检测和回归预测。递归神经网络(RNNs)和卷积神经网络(CNNs)在时间序列建模问题上取得了良好结果。

CNN应用于时间序列的代表即TCN,又被称为因果卷积。TCN与RNNs相比,具有如下的优势:

(1)并行性。与 RNN 中后继时间步长的预测必须等待之前时间步完成预测不同,卷积可以并行完成,因为每一层都使用相同的滤波器。因此,在训练和评估中,TCN 可以处理一整个较长的输入序列,而不是像 RNN 中那样顺序处理。

(2)灵活的感受野大小。TCN 有多种方式更改其感受野大小。其中目前表现最好的即WaveNet使用的扩大卷积(dilated convolution)。

(3)梯度稳定。TCN的反向传播与RNN相比明显不同,而且通过引入残差连接和跳跃连接,能够有效缓解和避免梯度爆炸和梯度消失现象。

了解WaveNet,必须了解如下的三个概念(1)扩大因果卷积(2)PixelCNN门激活(3)跳跃连接和残差连接

扩大因果卷积

766cc4e3339a405690671dd9aa25c685.png
图1 因果卷积示意图

因果卷积确保了模型输出不会违反数据的顺序:模型在 t 时刻输出的预测不会依赖任何一个未来时刻的数据,但是直接采用上述的因果卷积,为了使得模型能够捕捉长期依赖,模型必须拥有足够大的感受野,只能通过增加模型的深度和卷积核的大小,然而这将带来参数数量的迅速增加。WaveNet使用堆叠式扩大卷积层,这种卷积只需要几层就能获得很大的感受野,同时保留了输入分辨率和计算效率。

95046ee967708479c25ebab74c8a123a.png
扩大因果卷积
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值