c语言 圆周率10000位,计算圆周率 Pi (π)值, 精确到小数点后 10000 位(C语言)

大家都知道π=3.1415926……无穷多位, 历史上很多人都在计算这个数, 一直认为是一个非常复杂的问题。现在有了电脑, 这个问题就简单了。

电脑可以利用级数计算出很多高精度的值, 有关级数的问题请参考《高等数学》,以下是比较有名的有关π的级数:

0818b9ca8b590ca3270a3433284dd417.png

其中有些计算起来很复杂, 我们可以选用第三个, 比较简单, 并且收敛的非常快。

因为计算π值, 而这个公式是计算π/2的, 我们把它变形:

π = 2 + 2/3 + 2/3*2/5 + 2/3*2/5*3/7 + ...

--------------------------------------------------------------------------------

对于级数, 我们先做个简单测试, 暂时不要求精度:

用 C++ Builder 新建一个工程, 在 Form 上放一个 Memo1 和 一个 Button1, 在 Button1 的 OnClick 事件写:

void __fastcall TForm1::Button1Click(TObject *Sender)

{

double x=2, z=2;

int a=1, b=3;

while(z>1e-15)

{

z = z*a/b;

x += z;

a++;

b+=2;

}

Memo1->Text = AnsiString().sprintf("Pi=%.13f", x);

}

按Button1在Memo1显示出执行结果:

Pi=3.1415926535898

--------------------------------------------------------------------------------

这个程序太简单了, 而且 double 的精度很低, 只能计算到小数点后 10 几位。

把上面的程序改造一下, 让它精确到小数点后面 1000 位再测试一下:

在 Form 上再放一个按钮 Button2, 在这个按钮的 OnClick 事件写:

void __fastcall TForm1::Button2Click(TObject *Sender)

{

const ARRSIZE=1010, DISPCNT=1000; //定义数组大小,显示位数

char x[ARRSIZE], z[ARRSIZE]; //x[0] x[1] . x[2] x[3] x[4] .... x[ARRSIZE-1]

int a=1, b=3, c, d, Run=1, Cnt=0;

memset(x,0,ARRSIZE);

memset(z,0,ARRSIZE);

x[1] = 2;

z[1] = 2;

while(Run && (++Cnt<200000000))

{

//z*=a;

d = 0;

for(int i=ARRSIZE-1; i>0; i--)

{

c = z[i]*a + d;

z[i] = c % 10;

d = c / 10;

}

//z/=b;

d = 0;

for(int i=0; i

{

c = z[i]+d*10;

z[i] = c / b;

d = c % b;

}

//x+=z;

Run = 0;

for(int i=ARRSIZE-1; i>0; i--)

{

c = x[i] + z[i];

x[i] = c%10;

x[i-1] += c/10;

Run |= z[i];

}

a++;

b+=2;

}

Memo1->Text = AnsiString().sprintf("计算了 %d 次/r/n",Cnt);

Memo1->Text = Memo1->Text + AnsiString().sprintf("Pi=%d%d./r/n", x[0],x[1]);

for(int i=0; i

{

if(i && ((i%100)==0))

Memo1->Text = Memo1->Text + "/r/n";

Memo1->Text = Memo1->Text + (int)x[i+2];

}

}

按 Button2 执行结果:

Pi=03.

1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679

8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196

4428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273

7245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094

3305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912

9833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132

0005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235

4201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859

5024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303

5982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989

--------------------------------------------------------------------------------

这下心理有底了, 是不是改变数组大小就可以计算更多位数呢?答案是肯定的。

如果把定义数组大小和显示位数改为:

const ARRSIZE=10100, DISPCNT=10000; //定义数组大小,显示位数

执行结果精度可达 10000 位:

Pi=03.

1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679

8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196

4428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273

7245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094

3305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912

9833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132

0005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235

4201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859

5024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303

5982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989

3809525720106548586327886593615338182796823030195203530185296899577362259941389124972177528347913151

... 限于篇幅, 这里就省略了, 还是留给你自己来算吧!

5020141020672358502007245225632651341055924019027421624843914035998953539459094407046912091409387001

2645600162374288021092764579310657922955249887275846101264836999892256959688159205600101655256375678

--------------------------------------------------------------------------------

提高精度的原理:

以上程序的原理是利用数组把计算结果保存起来, 其中数组每一项保存10进制数的一位,

小数点定位在数组第1个数和第二个数之间, 即小数点前面2位整数, 其余都是小数位。

利用电脑模拟四则运算的笔算方法来实现高精度的数据计算,没想到最原始的方法竟然是精度最高的。

0818b9ca8b590ca3270a3433284dd417.png

  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值