一阶差分序列garch建模_基于时间序列的股票价格走势分析

本文基于2009-2018年沪深300指数,通过一阶差分序列分析,对比了ARIMA、ARCH和AR-GARCH模型在股票价格走势建模的优劣。研究发现,AR-GARCH(1,1)模型在拟合和短期预测上表现出最佳效果,但长期预测精度降低。时间序列分析对于理解和预测股票市场波动具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要:随着当代经济的不断发展,金融市场已经成为经济发展的重要部分,而股票市场作为金融市场的重要组成部分,便与国民经济密切相关。对于投资者而言,如何及时了解价格波动从而准确分析股票市场行情,是决策过程中的一个关键问题;对于股票市场的管理者来说,如何把握股市动态,从而营造稳定健康的交易环境,也是一项非常艰巨的任务。因此,更好地了解股市的波动特征,以及从中探索某些规律,对我们学习金融理论和进行金融实践都具有重要的意义。本文以2009-2018年的沪深300指数为例,对ARIMA模型、ARCH模型和AR-GARCH模型进行拟合,比较其在股票价格走势上的优劣,再用通过检验的拟合模型对股价进行一个短期的预测。最后发现AR-GARCH模型对原序列有较好的拟合效果,并且获得了较为精确的预测结果。

关键词:时间序;ARIMA模型;ARCH模型;AR-GARCH模型

1.数据预处理

1.1  平稳性检验

本文选取了2009年1月至2018年12月的沪深300指数每个工作日的收盘价作为研究对象,绘制其时序图并作出初步分析。

由原序列时序图可以看出,该序列有不太明显的周期性,直接观察无法确定其是否平稳,此时我们可以借助自相关图进一步判断序列是否平稳。

根据原序列的ACF图可以看出,随着延迟期数k的增加,ACF一直在零轴上方为正,而且衰减到零的速度非常慢,因此可以判断原序列为非平稳序列。

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值