张凤云
地区: 广 西 - 河池市 - 环江县
学校:环江毛南族自治县洛阳中学 共1课时
信息技术应用 用计算机画函数图象">信息技术应用 用计算机画… 初中数学 人教2011课标版 1教学目标
知识与技能:1、会利用两个合适的点画一次函数图象的画法。
2、能从图象角度理解正比例函数与一次函数的关系
3、对一次函数y=kx+b(k≠0)理解当k>0和k<0时,图象的变化情况,理解一次函数的增减性。
数学思考:通过对应描点来研究一次函数的图像,经历知识的归纳和探究过程;通过一次函数的图象归纳函数性质,体验数形结合法的应用。
情感态度:通过一次函数图象及其性质的研究,让学生体会数形结合的思想,让学生全身心的投入学习活动中,积极参与组内讨论,合作交流。 2学情分析
本班学生数学基础知识有些薄,实践探究能力弱,在教学中要注意引导学生去观察,去思考,去练习,让学生在讲练中发现和归纳性质,拓宽和加深认识。 3重点难点
教学重点:通过图象理解一次函数的性质.
教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。 4教学过程 4.1第一学时教学活动 活动1【导入】
活动1新课引入
1、画出正比例函数的图象时,通常在直角坐标系中选取哪两个点?
2、试想:能用这种方法作出一次函数的图象吗?
3、正比例函数y=kx(k≠0)中k的正负对函数图象有什么影响?
师生活动
1答:画正比例函数y=kx(k≠0)的图象,一般的,过(0,0)和点(1,k)。
2.可以
3。k>0时, 直线经过第一、三象限;图象从左到右上升,即 y随x增大而增大;k<0时, 直线经过第二、四象限;,图象从左到右下降即y随x的增大而减小
活动2【讲授】合作交流,探索画法
例2用描点法画出函数y=-6x与y=-6x+5的图象.
师生活动
1.比较上面两个函数的图象回答下列问题:
1)这两个函数的图象形状都是______,并且倾斜程度 ______ 从左到右________
2) 函数y=--6x的图象经过_____ ,函数y=-6x+5的图象与y轴交于( ),即它可以看作由直线y=-6x向____平移____ 个单位长度而得到。
3)比较两个函数的解析式试解释两函数图象的位置关系
师生互动知识归纳
1。一次函数y=kx+b(k≠0)的图象可以由直线y=kx平移 |b| 个单位长度得到.(当b>0时,向上 平移;当b<0时,向下平移.)
2。直线y=kx+b与直线直线y=kx互相平行
3.既然一次函数的图象是一条直线得到了画一次函数图象的简便方法----两点法。只需要确定两点,通常选取坐标较“简单”的点,如(0, )与(1, )或( ,0) 活动3【练习】学以致用
1.直线y=3x-2可由直线y=3x向____平移_______单位得到
2.直线y=x+2可由直线y=x-1向____平移_______单位得到
3.在同一直角坐标系中画出下列函数的图象,(1)y=x+1,(2)y=-x+1,(3)y=2x+1,(4)y=-2x+1 活动4【活动】探究
观察所画的函数图象,探究一次 函数y=kx+b(其中k、b是常数,k≠0)中k的正负对函数图象有什么影响。在学生得到结论后,教师用动画展示。学生观察图像,在充分思考的基础上,小组合作讨论,并把得到的结论写出来。教师参与其中,并作指导。
结论:k >0 函数的图象从左到右 上升,即y随x的增大而增大;k<0 图象从左到右下降即y随x的增大而减小。 活动5【练习】巩固提高:
1。直线y=2x-3与x轴交点坐标为 ,与x轴交点为 ,图象经过 象限,y随x的增大而 。
2.有下列函数:①y=2x+1, ②y=-3x+4, ③ y=0.5x, ④y=x-6;其中过原点的直线是函数_____y随x的增大而增大的是______函数y随x的增大而减小的是______
3.函数y=(m – 1)x+1是一次函数且y随自变量x增大而减小,那么m的取值为_______
4.已知一次函数y=2x+4的图象上有两点A(3,a),B(4,b),则a与b的大小关系为_________ 活动6【作业】课堂小结和布置作业
1.课堂小结
(1)一次函数y=kx+b的图象是什么?怎样用简便方法画一次函数的图象?
(2)一次函数有哪些性质?一次函数与正比例函数有什么关系?
(3)我们是怎样对一次函数的性质进行研究的?
2.作业:教科书习题19.2第4,5,6
信息技术应用 用计算机画函数图象 课时设计 课堂实录
信息技术应用 用计算机画函数图象 1第一学时 教学活动 活动1【导入】
活动1新课引入
1、画出正比例函数的图象时,通常在直角坐标系中选取哪两个点?
2、试想:能用这种方法作出一次函数的图象吗?
3、正比例函数y=kx(k≠0)中k的正负对函数图象有什么影响?
师生活动
1答:画正比例函数y=kx(k≠0)的图象,一般的,过(0,0)和点(1,k)。
2.可以
3。k>0时, 直线经过第一、三象限;图象从左到右上升,即 y随x增大而增大;k<0时, 直线经过第二、四象限;,图象从左到右下降即y随x的增大而减小
活动2【讲授】合作交流,探索画法
例2用描点法画出函数y=-6x与y=-6x+5的图象.
师生活动
1.比较上面两个函数的图象回答下列问题:
1)这两个函数的图象形状都是______,并且倾斜程度 ______ 从左到右________
2) 函数y=--6x的图象经过_____ ,函数y=-6x+5的图象与y轴交于( ),即它可以看作由直线y=-6x向____平移____ 个单位长度而得到。
3)比较两个函数的解析式试解释两函数图象的位置关系
师生互动知识归纳
1。一次函数y=kx+b(k≠0)的图象可以由直线y=kx平移 |b| 个单位长度得到.(当b>0时,向上 平移;当b<0时,向下平移.)
2。直线y=kx+b与直线直线y=kx互相平行
3.既然一次函数的图象是一条直线得到了画一次函数图象的简便方法----两点法。只需要确定两点,通常选取坐标较“简单”的点,如(0, )与(1, )或( ,0) 活动3【练习】学以致用
1.直线y=3x-2可由直线y=3x向____平移_______单位得到
2.直线y=x+2可由直线y=x-1向____平移_______单位得到
3.在同一直角坐标系中画出下列函数的图象,(1)y=x+1,(2)y=-x+1,(3)y=2x+1,(4)y=-2x+1 活动4【活动】探究
观察所画的函数图象,探究一次 函数y=kx+b(其中k、b是常数,k≠0)中k的正负对函数图象有什么影响。在学生得到结论后,教师用动画展示。学生观察图像,在充分思考的基础上,小组合作讨论,并把得到的结论写出来。教师参与其中,并作指导。
结论:k >0 函数的图象从左到右 上升,即y随x的增大而增大;k<0 图象从左到右下降即y随x的增大而减小。 活动5【练习】巩固提高:
1。直线y=2x-3与x轴交点坐标为 ,与x轴交点为 ,图象经过 象限,y随x的增大而 。
2.有下列函数:①y=2x+1, ②y=-3x+4, ③ y=0.5x, ④y=x-6;其中过原点的直线是函数_____y随x的增大而增大的是______函数y随x的增大而减小的是______
3.函数y=(m – 1)x+1是一次函数且y随自变量x增大而减小,那么m的取值为_______
4.已知一次函数y=2x+4的图象上有两点A(3,a),B(4,b),则a与b的大小关系为_________ 活动6【作业】课堂小结和布置作业
1.课堂小结
(1)一次函数y=kx+b的图象是什么?怎样用简便方法画一次函数的图象?
(2)一次函数有哪些性质?一次函数与正比例函数有什么关系?
(3)我们是怎样对一次函数的性质进行研究的?
2.作业:教科书习题19.2第4,5,6
Tags:信息,技术应用,计算机,函数,图象