线性回归系数的标准误_量化统计:线性回归

线性回归是一种建模技术,用于分析两个变量间的线性关系。一元线性模型中,回归系数β表示斜率,其显著性检验通过t检验进行,确保自变量对模型的影响显著。最小二乘法用于找到最优拟合线,减少残差平方和。估计标准误衡量观测数据在回归直线附近的分散,越小表示模型代表性越好。R square(决定系数)是衡量模型拟合优度的指标,值越接近1,拟合效果越好,但过高可能引发过拟合问题。
摘要由CSDN通过智能技术生成

线性回归:衡量两个变量之间线性关系的一种建模技术

一元线性模型:y = α + βx + ε, 其中ε 是均值为0,方差为固定常数,满足正态分布,与自变量x相互独立的白噪音。β:回归系数,即斜率;α:截距

回归系数的显著性检验

目的是检测自变量对于回归模型是否有必要。

假设: H0:β = 0, H1:β≠0 ; 临界值: Tα/2(n-2)

判断:若 |t| < tα/2, 接受H0,自变量不显著; 若 |t| ≥ tα/2, 拒绝H0,回归系数对方程的影响显著

最小二乘法OLS

使实际值y与估计值yc的离差平方和最小,又称最小平方法。Σ(y - yc)² =min最小值

一元线性回归实例:

import numpy as np
import statsmodels.api as sm

# 线性方程: y = 1 + beta * x + mu
# 模拟数据
nsample = 200                       #nsample为样本数量

x = np.linspace(0,10,nsample)       # 生成自变量数组x,其值在1-10等差排列
X = sm.add_constant(x)              # sm.add_constant是在向量左侧加上一列1

beta = np.array([1,10])             # 设置beta_0,b
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值