线性回归:衡量两个变量之间线性关系的一种建模技术
一元线性模型:y = α + βx + ε, 其中ε 是均值为0,方差为固定常数,满足正态分布,与自变量x相互独立的白噪音。β:回归系数,即斜率;α:截距
回归系数的显著性检验
目的是检测自变量对于回归模型是否有必要。
假设: H0:β = 0, H1:β≠0 ; 临界值: Tα/2(n-2)
判断:若 |t| < tα/2, 接受H0,自变量不显著; 若 |t| ≥ tα/2, 拒绝H0,回归系数对方程的影响显著
最小二乘法OLS
使实际值y与估计值yc的离差平方和最小,又称最小平方法。Σ(y - yc)² =min最小值
一元线性回归实例:
import numpy as np
import statsmodels.api as sm
# 线性方程: y = 1 + beta * x + mu
# 模拟数据
nsample = 200 #nsample为样本数量
x = np.linspace(0,10,nsample) # 生成自变量数组x,其值在1-10等差排列
X = sm.add_constant(x) # sm.add_constant是在向量左侧加上一列1
beta = np.array([1,10]) # 设置beta_0,b