python的lambda函数_Python Lambda函数使用总结详解

本文详细介绍了Python中的Lambda函数,包括其定义、使用场景及与def函数的对比。Lambda函数常用于创建匿名函数,尤其在与map(), filter(), reduce()等函数结合时,能简化代码。文章还展示了如何在Pandas数据处理中运用Lambda,以及其优缺点。
摘要由CSDN通过智能技术生成

这篇文章主要介绍了Python Lambda函数使用总结详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

lambda表达式是一种匿名函数,对应python中的自定义函数def,是定义某个函数时比较高级的一种写法。作为python初学者,本文整理了lambda的一些基本用法和特点。

lambda和def的对应关系

定义func函数,计算给定数x的平方

def func(x):

return x*x

等价于

func = lambda x: x*x

其中func是函数名,x是输入参数,x*x是输出结果

输入参数可以有多个,可以接收不定参数如*args或者**kwargs。

f = lambda x, *args, para, **kwargs : [args, para, kwargs]

f(1, 2, 3, para="number", name="Jack", sex="male")

# 输出 [(2, 3), "number", {"name": "Jack", "sex": "male"}]

有时也可以不指定输入参数,如:

lambda: random.randn()

lambda与map(), filter(), reduce()

lambda表达式返回一个函数,这个函数可以作为其他函数的参数。常用的可以与lambda组合的内置函数有map(), filter(), reduce().

在处理一个可迭代对象如列表,字典等时,可以用map(lambda, x) 代替 for...in...循环,如:

lst = [1, 2, 3, 4, 5]

res = []

for i in lst:

a = i*i

res.append(a)

等价于

res = list(map(lambda x:x*x, lst))

可以看到这里的lambda生成的函数直接作为map函数的function参数,对列表的每一个元素进行平方计算

同理可以将lambda用于filter进行筛选,或者reduce累积运算:

from functools import reducelst = [1, 2, 3, 4, 5]f_res = filter(lambda x: x>3, lst)

r_res = reduce(lambda x, y: x*y, lst)

print("大于3的数字有:", list(f_res))

print("累乘结果为:", r_res)

输出结果:

大于3的数字有: [4, 5]

累乘结果为: 120

lambda与if条件判断

lambda表达式中可以插入if...else进行条件判断,如

f = lambda x: "even" if x%2==0 else "odd"

# f(3)输出结果 odd

等价于

def f(x):
  if x%2==0:
    return "even"
  else:
    return "odd"

注意如果在lambda中使用if进行条件判断,则else是必须声明的,否则会引起报错。如果不返回结果可以用 else None 表示。

if...elif...else的多条件判断也可以用于lambda,但会使得代码过于复杂,所以不推荐。

lambda在pandas中的使用

lambda函数常用于DataFrame或者Series对象下的map、apply、transform方法

import pandas as pd

df = pd.DataFrame({"Age": [22, 21, 22, 21, 20], "Score": [87, 66, 79, 54, 59]})

df["Pass"] = df.apply(lambda x: "pass" if x[1]>=60 else "Not pass", axis=1)

输出新列 "Pass",根据成绩判断通过与否,输出df后结果为:

Age Score Pass

0 22 87 pass

1 21 66 pass

2 22 79 pass

3 21 54 Not pass

4 20 59 Not pass

x为DataFrame对象,当参数axis=1时,x[1]等于第二列。

当用于Series对象时,以上代码等价于:

df["Pass"] = df["Score"].apply(lambda x: "pass" if x>60 else "Not pass")

在pandas中,通过apply,map, transform方法,lambda可以直接应用于Series级别的运算。

当使用applymap方法时,lambda可以应用于DataFrame级别的运算。

lamda的优缺点

lambda的优点:

不需要定义函数名(匿名函数)

代码简洁美观

适用于定义简单的计算

lambda的缺点:

只有一个运算式,不适用于复杂的计算

不够直观,难于理解,增加了维护成本

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持云海天教程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值