python空间数据处理_Python空间数据处理之GDAL读写遥感图像

GDAL是空间数据处理的开源包,支持多种数据格式的读写。遥感图像是一种带大地坐标的栅格数据,遥感图像的栅格模型包含以下两部分的内容:

栅格矩阵:由正方形或者矩形栅格点组成,每个栅格点所对应的数值为该点的像元值,在遥感图像中用于表示地物属性值;遥感图像有单波段与多波段,波段表示地物属性的种类,每个波段表示地物一种属性。

大地坐标:空间数据参考表示地图的投影信息;仿射矩阵能将行列坐标映射到面坐标上。

GDAL读写遥感数据的代码:

from osgeo import gdal

import os

class GRID:

#读图像文件

def read_img(self,filename):

dataset=gdal.Open(filename) #打开文件

im_width = dataset.RasterXSize #栅格矩阵的列数

im_height = dataset.RasterYSize #栅格矩阵的行数

im_geotrans = dataset.GetGeoTransform() #仿射矩阵

im_proj = dataset.GetProjection() #地图投影信息

im_data = dataset.ReadAsArray(0,0,im_width,im_height) #将数据写成数组,对应栅格矩阵

del dataset

return im_proj,im_geotrans,im_data

#写文件,以写成tif为例

def write_img(self,filename,im_proj,im_geotrans,im_data):

#gdal数据类型包括

#gdal.GDT_Byte,

#gdal .GDT_UInt16, gdal.GDT_Int16, gdal.GDT_UInt32, gdal.GDT_Int32,

#gdal.GDT_Float32, gdal.GDT_Float64

#判断栅格数据的数据类型

if 'int8' in im_data.dtype.name:

datatype = gdal.GDT_Byte

elif 'int16' in im_data.dtype.name:

datatype = gdal.GDT_UInt16

else:

datatype = gdal.GDT_Float32

#判读数组维数

if len(im_data.shape) == 3:

im_bands, im_height, im_width = im_data.shape

else:

im_bands, (im_height, im_width) = 1,im_data.shape

#创建文件

driver = gdal.GetDriverByName("GTiff") #数据类型必须有,因为要计算需要多大内存空间

dataset = driver.Create(filename, im_width, im_height, im_bands, datatype)

dataset.SetGeoTransform(im_geotrans) #写入仿射变换参数

dataset.SetProjection(im_proj) #写入投影

if im_bands == 1:

dataset.GetRasterBand(1).WriteArray(im_data) #写入数组数据

else:

for i in range(im_bands):

dataset.GetRasterBand(i+1).WriteArray(im_data[i])

del dataset

if __name__ == "__main__":

os.chdir(r'D:\Python_Practice') #切换路径到待处理图像所在文件夹

run = GRID()

proj,geotrans,data = run.read_img('LC81230402013164LGN00.tif') #读数据

print proj

print geotrans

print data

print data.shape

run.write_img('LC81230402013164LGN00_Rewrite.tif',proj,geotrans,data) #写数据

在GDAL遥感影像读写的基础上,我们可以进行遥感图像的各种公式计算和统计分析。

例如我们所熟知的计算NDVI(归一化植被指数),只要在以上代码倒数第二行中插入代码:

import numpy as np

data = data.astype(np.float)

ndvi = (data[3]-data[2])/(data[3]+data[2]) #3为近红外波段;2为红波段

run.write_img('LC81230402013164LGN00_ndvi.tif',proj,geotrans,ndvi) #写为ndvi图像

当然,这是理想的NDVI,实际处理NDVI还会遇到一些其他要处理的问题。例如NDVI值应该在区间[-1,1]内,但实际中会出现大于1或小于-1的情况,或者某些像点是坏点,出现空值nan,需要进一步的配套处理。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

时间: 2019-07-31

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
<p> 欢迎参加英特尔® OpenVINO™工具套件初级课程 !本课程面向零基础学员,将从AI的基本概念开始,介绍人工智能与视觉应用的相关知识,并且帮助您快速理解英特尔® OpenVINO™工具套件的基本概念以及应用场景。整个课程包含了视频的处理,深度学习的相关知识,人工智能应用的推理加速,以及英特尔® OpenVINO™工具套件的Demo演示。通过本课程的学习,将帮助您快速上手计算机视觉的基本知识和英特尔® OpenVINO™ 工具套件的相关概念。 </p> <p> 为保证您顺利收听课程参与测试获取证书,还请您于<strong>电脑端</strong>进行课程收听学习! </p> <p> 为了便于您更好的学习本次课程,推荐您免费<strong>下载英特尔® OpenVINO™工具套件</strong>,下载地址:https://t.csdnimg.cn/yOf5 </p> <p> 收听课程并完成章节测试,可获得本课程<strong>专属定制证书</strong>,还可参与<strong>福利抽奖</strong>,活动详情:https://bss.csdn.net/m/topic/intel_openvino </p> <p> 8月1日-9月30日,学习完成【初级课程】的小伙伴,可以<span style="color:#FF0000;"><strong>免费学习【中级课程】</strong></span>,中级课程免费学习优惠券将在学完初级课程后的7个工作日内发送至您的账户,您可以在:<a href="https://i.csdn.net/#/wallet/coupon">https://i.csdn.net/#/wallet/coupon</a>查询优惠券情况,请大家报名初级课程后尽快学习哦~ </p> <p> <span style="font-size:12px;">请注意:点击报名即表示您确认您已年满18周岁,并且同意CSDN基于商务需求收集并使用您的个人信息,用于注册OpenVINO™工具套件及其课程。CSDN和英特尔会为您定制最新的科学技术和行业信息,将通过邮件或者短信的形式推送给您,您也可以随时取消订阅不再从CSDN或Intel接收此类信息。 查看更多详细信息请点击CSDN“<a href="https://passport.csdn.net/service">用户服务协议</a>”,英特尔“<a href="https://www.intel.cn/content/www/cn/zh/privacy/intel-privacy-notice.html?_ga=2.83783126.1562103805.1560759984-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">隐私声明</a>”和“<a href="https://www.intel.cn/content/www/cn/zh/legal/terms-of-use.html?_ga=2.84823001.1188745750.1560759986-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">使用条款</a>”。</span> </p> <p> <br /> </p>
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页