python决策树算法代码_决策树原理实例(python代码实现)

决策数(Decision Tree)在机器学习中也是比较常见的一种算法,属于监督学习中的一种。看字面意思应该也比较容易理解,相比其他算法比如支持向量机(SVM)或神经网络,似乎决策树感觉“亲切”许多。

优点:计算复杂度不高,输出结果易于理解,对中间值的缺失值不敏感,可以处理不相关特征数据。

缺点:可能会产生过度匹配的问题。

使用数据类型:数值型和标称型。

简单介绍完毕,让我们来通过一个例子让决策树“原形毕露”。

一天,老师问了个问题,只根据头发和声音怎么判断一位同学的性别。

为了解决这个问题,同学们马上简单的统计了7位同学的相关特征,数据如下:

头发声音性别

机智的同学A想了想,先根据头发判断,若判断不出,再根据声音判断,于是画了一幅图,如下:

SouthEast

于是,一个简单、直观的决策树就这么出来了。头发长、声音粗就是男生;头发长、声音细就是女生;头发短、声音粗是男生;头发短、声音细是女生。

原来机器学习中决策树就这玩意,这也太简单了吧。。。

这时又蹦出个同学B,想先根据声音判断,然后再根据头发来判断,如是大手一挥也画了个决策树:

SouthEast

同学B的决策树:首先判断声音,声音细,就是女生;声音粗、头发长是男生;声音粗、头发长是女生。

那么问题来了:同学A和同学B谁的决策树好些?计算机做决策树的时候,面对多个特征,该如何选哪个特征为最佳的划分特征?

划分数据集的大原则是:将无序的数据变得更加有序。

我们可以使用多种方法划分数据集,但是每种方法都有各自的优缺点。于是我们这么想,如果我们能测量数据的复杂度,对比按不同特征分类后的数据复杂度,若按某一特征分类后复杂度减少的更多,那么这个特征即为最佳分类特征。

Claude Shannon 定义了熵(entropy)和信息增益(information gain)。

用熵来表示信息的复杂度,熵越大,则信息越复杂。公式如下:

SouthEast

信息增益(information gain),表示两个信息熵的差值。

首先计算未分类前的熵,总共有8位同学,男生3位,女生5位。

熵(总)=-3/8*log2(3/8)-5/8*log2(5/8)=0.9544

接着分别计算同学A和同学B分类后信息熵。

同学A首先按头发分类,分类后的结果为:长头发中有1男3女。短头发中有2男2女。

熵(同学A长发)=-1/4*log2(1/4)-3/4*log2(3/4)=0.8113

熵(同学A短发)=-2/4*log2(2/4)-2/4*log2(2/4)=1

熵(同学A)=4/8*0.8113+4/8*1=0.9057

信息增益(同学A)=熵(总)-熵(同学A)=0.9544-0.9057=0.0487

同理,按同学B的方法,首先按声音特征来分,分类后的结果为:声音粗中有3男3女。声音细中有0男2女。

熵(同学B声音粗)=-3/6*log2(3/6)-3/6*log2(3/6)=1

熵(同学B声音粗)=-2/2*log2(2/2)=0

熵(同学B)=6/8*1+2/8*0=0.75

信息增益(同学B)=熵(总)-熵(同学A)=0.9544-0.75=0.2087

按同学B的方法,先按声音特征分类,信息增益更大,区分样本的能力更强,更具有代表性。

以上就是决策树ID3算法的核心思想。

接下来用python代码来实现ID3算法:

1 from math importlog2 importoperator3

4 def calcShannonEnt(dataSet): #计算数据的熵(entropy)

5 numEntries=len(dataSet) #数据条数

6 labelCounts={}7 for featVec indataSet:8 currentLabel=featVec[-1] #每行数据的最后一个字(类别)

9 if currentLabel not inlabelCounts.keys():10 labelCounts[currentLabel]=011 labelCounts[currentLabel]+=1 #统计有多少个类以及每个类的数量

12 shannonEnt=013 for key inlabelCounts:14 prob=float(labelCounts[key])/numEntries #计算单个类的熵值

15 shannonEnt-=prob*log(prob,2) #累加每个类的熵值

16 returnshannonEnt17

18 def createDataSet1(): #创造示例数据

19 dataSet = [['长', '粗', '男'],20 ['短', '粗', '男'],21 ['短', '粗', '男'],22 ['长', '细', '女'],23 ['短', '细', '女'],24 ['短', '粗', '女'],25 ['长', '粗', '女'],26 ['长', '粗', '女']]27 labels = ['头发','声音'] #两个特征

28 returndataSet,labels29

30 def splitDataSet(dataSet,axis,value): #按某个特征分类后的数据

31 retDataSet=[]32 for featVec indataSet:33 if featVec[axis]==value:34 reducedFeatVec =featVec[:axis]35 reducedFeatVec.extend(featVec[axis+1:])36 retDataSet.append(reducedFeatVec)37 returnretDataSet38

39 def chooseBestFeatureToSplit(dataSet): #选择最优的分类特征

40 numFeatures = len(dataSet[0])-1

41 baseEntropy = calcShannonEnt(dataSet) #原始的熵

42 bestInfoGain =043 bestFeature = -1

44 for i inrange(numFeatures):45 featList = [example[i] for example indataSet]46 uniqueVals =set(featList)47 newEntropy =048 for value inuniqueVals:49 subDataSet =splitDataSet(dataSet,i,value)50 prob =len(subDataSet)/float(len(dataSet))51 newEntropy +=prob*calcShannonEnt(subDataSet) #按特征分类后的熵

52 infoGain = baseEntropy - newEntropy #原始熵与按特征分类后的熵的差值

53 if (infoGain>bestInfoGain): #若按某特征划分后,熵值减少的最大,则次特征为最优分类特征

54 bestInfoGain=infoGain55 bestFeature =i56 returnbestFeature57

58 def majorityCnt(classList): #按分类后类别数量排序,比如:最后分类为2男1女,则判定为男;

59 classCount={}60 for vote inclassList:61 if vote not inclassCount.keys():62 classCount[vote]=063 classCount[vote]+=1

64 sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)65 returnsortedClassCount[0][0]66

67 defcreateTree(dataSet,labels):68 classList=[example[-1] for example in dataSet] #类别:男或女

69 if classList.count(classList[0])==len(classList):70 returnclassList[0]71 if len(dataSet[0])==1:72 returnmajorityCnt(classList)73 bestFeat=chooseBestFeatureToSplit(dataSet) #选择最优特征

74 bestFeatLabel=labels[bestFeat]75 myTree={bestFeatLabel:{}} #分类结果以字典形式保存

76 del(labels[bestFeat])77 featValues=[example[bestFeat] for example indataSet]78 uniqueVals=set(featValues)79 for value inuniqueVals:80 subLabels=labels[:]81 myTree[bestFeatLabel][value]=createTree(splitDataSet\82 (dataSet,bestFeat,value),subLabels)83 returnmyTree84

85

86 if __name__=='__main__':87 dataSet, labels=createDataSet1() #创造示列数据

88 print(createTree(dataSet, labels)) #输出决策树模型结果

输出结果为:

1 {'声音': {'细': '女', '粗': {'头发': {'短': '男', '长': '女'}}}}

这个结果的意思是:首先按声音分类,声音细为女生;然后再按头发分类:声音粗,头发短为男生;声音粗,头发长为女生。

这个结果也正是同学B的结果。

补充说明:判定分类结束的依据是,若按某特征分类后出现了最终类(男或女),则判定分类结束。使用这种方法,在数据比较大,特征比较多的情况下,很容易造成过拟合,于是需进行决策树枝剪,一般枝剪方法是当按某一特征分类后的熵小于设定值时,停止分类。

ID3算法存在的缺点:

1. ID3算法在选择根节点和内部节点中的分支属性时,采用信息增益作为评价标准。信息增益的缺点是倾向于选择取值较多是属性,在有些情况下这类属性可能不会提供太多有价值的信息。

2. ID3算法只能对描述属性为离散型属性的数据集构造决策树 。

为了改进决策树,又提出了ID4.5算法和CART算法。之后有时间会介绍这两种算法。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值