评分模型的开发、部署、测试、文档说明全流程

评分模型的开发、部署、测试、文档说明全流程 详见github https://github.com/chengsong990020186/xgboost_score_model/tree/master 如对你有学习有帮助,请支持点赞~ 主要内容: 1.使用xgboost训练模型,并保存。 2.基...

2019-05-31 17:20:17

阅读数 65

评论数 0

一行代码搞定信用评分模型(python)

欢迎大家,上一篇博客【信用卡评分模型(R语言)】详细的讲解了如何开发评分卡,这片博客就不再详细介绍,为方便开发评分卡,本人根据自己经验写了一个python包,导入此包后仅需一行代码即可成功制作评分卡,默认参数已经设置好,效果还可以,欢迎大家使用,如有疑问以及使用中出现BUG,可与我联系,欢迎交流学...

2019-02-28 10:05:50

阅读数 1191

评论数 2

信用评分模型(R语言)

信用评分 2016年1月10日 本文详细的介绍了信用评分卡的开发流程,开发语言为R语言,python版本请见:一行代码搞定信用评分模型(python) python版实例和数据请见我的github:https://github.com/chengsong990020186/CreditSco...

2016-04-23 10:45:57

阅读数 74508

评论数 81

爬虫--爬取csdn消息并邮箱通知(python3)

之前有很多同学给我发消息,咨询相关问题,我都没能及时回复解答。 主要原因是工作比较忙,博客没有每天登入查看消息。等到打开消息,看一些同学的消息,无奈都已经过去了多天。 所以这里写了个小脚本,每天爬取博客消息通知,如果有新消息,就发送到个人邮箱提醒。 代码如下: #Version: pyth...

2018-02-13 15:40:16

阅读数 1142

评论数 2

本人联系方式

联系方式:base64 加密 邮箱:OTkwMDIwMTg2QHFxLmNvbQ==

2018-01-30 19:45:07

阅读数 1222

评论数 1

bagging和boosting(python代码实现)

分类算法很多,有的效果比较好,有的效果稍微差点。 这里还有一种“新”分类算法,就是把多个分类器组合成一个分类器,主要有bagging 和boosting两种。 bagging算法:从原始数据中随机抽取n个样本,重复s次,于是就有个s个训练集,每个训练集都可以训练出一个分类器,最终生成s个分类...

2017-05-16 22:54:10

阅读数 5211

评论数 1

支持向量机SVM通俗理解(python代码实现)

这是第三次来“复习”SVM了,第一次是使用SVM包,调用包并尝试调节参数。听闻了“流弊”SVM的算法。第二次学习理论,看了李航的《统计学习方法》以及网上的博客。看完后感觉,满满的公式。。。记不住啊。第三次,也就是这次通过python代码手动来实现SVM,才让我突然对SVM不有畏惧感。希望这里我能通...

2017-05-11 02:42:08

阅读数 29468

评论数 51

逻辑回归logistic原理(python代码实现)

Logistic Regression Classifier逻辑回归主要思想就是用最大似然概率方法构建出方程,为最大化方程,利用牛顿梯度上升求解方程参数。 优点:计算代价不高,易于理解和实现。 缺点:容易欠拟合,分类精度可能不高。 使用数据类型:数值型和标称型数据。

2017-04-08 20:43:39

阅读数 21599

评论数 15

朴素贝叶斯文本分类(python代码实现)

朴素贝叶斯(naive bayes)法是基于贝叶斯定理与特征条件独立假设的分类方法。 优点:在数据较少的情况下仍然有效,可以处理多分类问题。 缺点:对入输入数据的准备方式较为敏感。 使用数据类型:标称型数据。

2017-04-07 00:02:48

阅读数 12119

评论数 2

5分钟,6行代码教你写爬虫!(python)

5分钟,6行代码教你写会爬虫! 适用人士:对数据量需求不大,简单的从网站上爬些数据。 好,不浪费时间了,开始! 先来个例子:输入以下代码(共6行)import requests from lxml import html url='https://movie.douban.com/' #需要...

2017-03-30 20:52:51

阅读数 67531

评论数 28

决策树原理实例(python代码实现)

决策数(Decision Tree)在机器学习中也是比较常见的一种算法,属于监督学习中的一种。看字面意思应该也比较容易理解,相比其他算法比如支持向量机(SVM)或神经网络,似乎决策树感觉“亲切”许多。 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失值不敏感,可以处理不相关特征数据。 缺点:...

2017-03-26 23:04:13

阅读数 38129

评论数 8

KNN算法原理(python代码实现)

kNN(k-nearest neighbor algorithm)算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。简单地说,K-近邻算法采用测量不同特征值之间的距离方法进行分类。 - 优点:精度高、对异常值...

2017-03-14 22:42:28

阅读数 1373

评论数 0

数据库中的空值与NULL的区别以及python中的NaN和None

数据库里面的”空值”有两种:空字符(“”)、空值(NULL)。 两种存储方式在数据库中都很常见,实际中根据业务或者个人习惯可以用这两种方式来存储“空值”。那这两种到底有什么区别,下面通过例子直接来展示

2017-03-06 21:41:50

阅读数 23799

评论数 0

文件转换为utf-8编码(python小脚本)

本人windows环境,平时从数据库导出数据或者从网上下载csv或txt数据后,会发现各种编码格式。导致有时候打开文件会乱码。为了方便,把文件统一改为utf-8编码,这样就减少了很多麻烦。故写个python小脚本,解决麻烦。以下为思路: 在桌面建立空白文件夹,把需要转换编码的文件拖到里面; 读取文...

2017-03-01 22:57:20

阅读数 16781

评论数 1

Adative-lasso+灰色预测(R)

最近在看特征的选择,看到lasso对特征选择不错,下面直接上干货 数据为广州统计年检2015年数据 目标: 1)       梳理影响地方财政收入的关键特征,分析、识别影响地方财政收入的关键特征的选择模型; 2)       结合目标1的因素分析,对广州市2015年的财政总收入及各...

2016-08-19 15:03:13

阅读数 4301

评论数 5

支持向量机SVM算法原理及应用(R)

只要接触到数据挖掘/机器学习,相比都会听过“支持向量机”的大名。在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别、分类、以及回归分析。SVM涉及的知识面非常广,目标函数、优化过程、并行方法、算法收敛性、样本复杂度等。学习S...

2016-08-17 16:37:25

阅读数 32036

评论数 2

K-means算法原理以及应用(R)

K-means是一种无监督学习算法,是聚类算法中最简单的一种了。不同与一些分类的监督学习算法,比如逻辑回归、SVM、随机森林等,k-means聚类无需给定Y变量,只有特征X。下面是k-means算法原理及思想。  在聚类问题中,给我们的训练样本是,每个,没有了y。      K-means算...

2016-08-16 23:58:29

阅读数 20426

评论数 2

简单的文本挖掘-用于QQ聊天记录(R)

平时的交流很多都在QQ上,QQ交流已经离不开日常的生活,这里我用R来分析QQ聊天记录,看看平时都聊了什么。 首先介绍下用的文本挖掘的包:Rwordseg  一个 R 环境下的中文分词工具,使用 rJava 调用 Java 分词工具 Ansj。   该包需配合rJava包一起使用。详见李舰老师博客:...

2016-08-04 19:26:45

阅读数 6873

评论数 2

奇异值分解及几何意义

PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义。能在有限的篇幅把这个问题讲解的如此清晰,实属不易。原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD...

2016-07-26 18:50:53

阅读数 770

评论数 0

logistic回归报错问题:Warning messages: 1: glm.fit:算法没有聚合 2: glm.fit:拟合機率算出来是数值零或一

logistic回归的时候报错问题包括下面两种 Warning: glm.fit: algorithm did not converge Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred  Warning...

2016-07-26 10:40:48

阅读数 20400

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭