agd插值算法_[转载]插值算法(一):各种插值方法比较

本文对比了多种空间插值方法,包括反距离加权法、样条插值(如张力样条、薄板样条)、克里金法(如简单克里格、普通克里格)以及趋势面插值。这些方法在处理空间数据时,各有优缺点,如IDW简单快速但易受极值影响,克里金法在点稀少时效果较好,趋势面插值则适合模拟逐渐变化的表面。
摘要由CSDN通过智能技术生成

整体拟合法

局部拟合法

确定性

随机性

确定性

随机性

趋势面(非精确)

回归(非精确)

泰森(精确)

密度估算(非精确)

反距离权重(精确)

薄板样条(精确)

克里金(精确)

整体拟合利用现有的所有已知点来估算未知点的值。

局部插值使用已知点的样本来估算位置点的值。

确定性插值方法不提供预测值的误差检验。

随机性插值方法则用估计变异提供预测误差的评价。

对于某个数据已知的点,精确插值法在该点位置的估算值与该点已知值相同。也就是,精确插值所生成的面通过所有控制点,而非精确插值或叫做近似插值,估算的点值与该点已知值不同。

1、反距离加权法(Inverse Distance Weighted)

反距离加权法是一种常用而简单的空间插值方法,IDW是基于“地理第一定律”的基本假设:即两个物体相似性随他们见的距离增大而减少。它以插值点与样本点间的距离为权重进行加权平均,离插值点越近的样本赋予的权重越大,此种方法简单易行,直观并且效率高,在已知点分布均匀的情况下插值效果好,插值结果在用于插值数据的最大值和最小值之间,但缺点是易受极值的影响。

2、样条插值法(Spline)

样条插值是使用一种数学函数,对一些限定的点值,通过控制估计方差,利用一些特征节点,用多项式拟合的方法来产生平滑的插值曲线。这种方法适用于逐渐变化的曲面,如温度、高程、地下水位高度或污染浓度等。该方法优点是易操作,计算量不大,缺点是难以对误差进行估计,采样点稀少时效果不好。

样条插值法又分为<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值