python sklearn 归一化_使用python+sklearn实现谱聚类用于图像分割

该博客演示了如何使用Python和sklearn库的谱聚类算法对包含连接圆的图像进行分割。通过归一化图割方法,算法在考虑梯度和区域体积的同时,有效地切割图像。由于图像强度信息不重要,聚类集中在对象轮廓上,以分离对象。文中还提及了运行时间和内存使用情况,并邀请读者一起学习scikit-learn的机器学习算法。
摘要由CSDN通过智能技术生成

在此示例中,将生成具有连接圆的图像,并使用谱聚类算法来分割圆。

在这些设置中,谱聚类算法解决了一个被称为“归一化图割(normalized graph cuts)”的问题:将图像视为已连接立体像素(voxels)的图,谱聚类算法相当于选择图割的定义区域,同时最小化沿着梯度减少的比例,以及区域的体积。

当算法尝试平衡体积(即平衡区域大小)时,如果我们采用不同大小的圆,则会分割失败。

另外,由于在图像强度或在其梯度中没有有用的信息,因此我们选择在仅受梯度影响较弱的图形上进行谱聚类。这近似于执行图的Voronoi分区。

另外,我们将使用对象的遮罩(mask),用来把图形限制为对象的轮廓。在此示例中,我们主要关注的是将对象彼此分离,而不是将其与背景分离。

bb547d71b42babf245d8df0518039760.png

sphx_glr_plot_segmentation_toy_001

3abbeb732b8b1c47882c12283699fe2c.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值