机器学习大作业_机器学习课程一作业

这篇博客记录了作者在机器学习课程中的一次作业经历。第一周的学习内容涵盖了机器学习基础和Python中的线性回归库应用。作者运用这些知识,针对一组高度-温度数据进行分析,利用LinearRegression预测8000米高度的温度,得出预测值为-39.838度。实现过程通过Python代码完成。
摘要由CSDN通过智能技术生成

第一周学习了机器学习的基本概念以及用python库中的线形回归库进行预测。

作业如下:

已知一组高度-温度的数据,预测在8000米处的温度。

思路:使用LinearRegression库对csv中的数据进行学习,发现数据具有线性特征。就采用predict()函数进行预测,预测结果为8000米海拔对应的温度预测为-39.838度。

使用python实现的代码如下:

#导入库
import pandas as pd #数据读取库
import numpy as np #线性代数库
import matplotlib.pyplot as plt #画图
from sklearn.linear_model import LinearRegression #线性回归库
#辅助画图
data = pd.read_csv("Downloads/Machine-Learning/master/1introduction/exercise/height.vs.temperature.csv")
plt.figure(figsize=(16,8))
plt.scatter(data['height'],data['temperature'],c='black')
plt.xlabel('height')
plt.ylabel('temperature')
plt.show()
x = data['height'].values.reshape(-1,1)
y = data['temperature'].values.reshape(-1,1)
reg = LinearRegression()
reg.fit(x,y)
#对应的输出为LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,
         normalize=False),第二个true显示符合线性模型
print('a={:.5}'.format(reg.coef_[0][0]))
print('b={:.5}'.format(reg.intercept_[0]))
print("线性模型为: y = {:.5}x+{:.5}".format(reg.coef_[0][0],reg.intercept_[0]))
#a=-0.0065695

#b=12.719
#线性模型为: y = -0.0065695x+12.719
prediction = reg.predict([[8000]])
print("8000米海拔对应的温度预测为{:.5}度".format(prediction[0][0]))
#8000米海拔对应的温度预测为-39.838度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值