双边指数函数的傅里叶变换
,
双边指数函数的波形如图所示
,
其数学表达式为
0
t
题图
1-2
双边指数函数
解:
x
t
(
)
是一个非周期信号,它的傅里叶变换即为其频谱密度函数,按定义式求解:
1.2
求题图
1-1
周期三角波的傅里叶级数
(
三角函数形式和复指数形式
),
并画出频谱图。周期三角波的数学表
达式为
A
T
2
0
T
2
t
题图
1.2
周期性三角波
解:将
)
(
t
x
展开成三角函数形式的傅里叶级数,求其频谱。
计算傅里叶系数:
∵
)
(
t
x
是偶函数
∴
0
n
b
于是,有
2
/
0
0
2
0
2
0
0
2
)
cos
1
sin
(
8
T
n
t
n
n
t
n
n
t
T
A
a
由此得
)
(
t
x
的三角函数形式傅里叶级数展开上展开式为
若取
)
sin(
)
(
0
1
0
n
n
n
t
n
A
a
t
x
n
次谐波分量的幅值
2
2
2
2
π
4
n
A
b
a
A
n
n
n
n
次谐波分量的相位
2
π
arctan
n
n
n
b
a
画出
)
(
t
x
的频谱如题图
1.2(b)
所示。
将
)
(
t
x
展开成复数形式的傅里叶级数,求其频谱。
计算傅里叶系数
0
0
3
0
5
0
7
0
9
0
π
/2
π
/2
π
/2
π
/2
π
/2
0
0
3
0
5
0
7
0
9
0
题图
1.2(b)
由此得
)
(
t
x
的复指数形式傅里叶级数展开上展开式为
n
次谐波分量的幅值
n
次谐波分量的相位
画出
x
t
(
)
的频谱如题图
1.2(c)
所示。
1-3
求正弦信号
)
sin(
)
(
t
a
A
t
x
的绝对均值
x
,
均
方根值
)
(
rm
s
t
x
及概率密度函数
p
(
x
)
。
解
9
0
7
0
5
0
3
0
0
0
0
3
0
5
0
7
0
9
0
9
0
7
0
5
0
3
0
0
0
-
-
-
-
-
0
x
(
t
)