系统辨识与自适应控制matlab程序_基于自加速遗传粒子群算法的半封闭式温室能耗预测...

文章提出一种结合机理建模与系统辨识的温室能耗预测方法,使用SPSO-GA算法对温室物理模型参数进行辨识,通过与GA和PSO对比,证明SPSO-GA在能耗预测上的高精度和鲁棒性,可为温室能源管理提供理论支持。
摘要由CSDN通过智能技术生成

摘要

     针对半封闭式温室环境参数众多且难以测量的问题,提出了一种机理建模与系统辨识建模相结合的温室能耗建模方法。采用自加速遗传粒子群算法(SPSO-GA)对温室物理模型中难以确定的参数进行辨识,建立半封闭式温室能耗预测模型。根据上海半封闭式玻璃试验温室的气象数据和测量的能耗值,分别采用遗传算法(GA)、粒子群算法(PSO)和SPSO-GA进行参数辨识与能耗预测比较分析。采用SPSO-GA获得的温室能耗预测结果与实测数据的相对误差为1.4%,分别比GA和PSO减少了2.9%和13.7%。根据日太阳光照辐射总量、室外日均温度2个参数及相应的变化曲线,预测的温室能耗值精确度大于86%。试验与模拟结果验证了基于SPSO-GA的温室能耗预测模型有效,可为半封闭式温室能量负载设计、管理和控制提供理论依据。

材料与方法

1.实验材料

     试验在连栋玻璃半封闭式温室进行数据采集与验证,采用顶窗自然通风方式,室内采用暖风机与热风管道供热。为减弱室内的阴影,覆盖材料采用雾化减发射玻璃,室内过道铺反射膜,以提高温室内部太阳辐射的均匀度。室内外分别安装荷兰Priva公司的气象站和2个温湿度传感器。传感器数据每5min采集1次,数据由Priva公司的环境采集控制电脑读取并保存记录。

2.能耗预测模型构建方法

     根据热平衡原理建立温室各物理过程的热交换方程,联立获取温室能耗预测模型。结合温室内外实测气象数据和能耗,分析物理模型中的各参数,提取模型中的不确定参数,并得到温室待辨识的能耗预测模型。将温室内外的温度、湿度、风速等各种环境信息输入到待辨识的模型中,通过模拟结果与实

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值