java 事件冷却,基于“牛顿冷却定律”的机器学习算法

本文探讨了如何运用牛顿冷却定律来构建热门排名算法,通过将温度变化的数学模型应用于热度衰减,模拟话题热度随时间的下降。算法中,热度分值会逐渐减少并趋向于零,同时考虑新增点击的影响,使得新内容能更快进入热门。这种方法符合信息热度自然消退的规律,适用于新闻、话题等的热门排名更新。
摘要由CSDN通过智能技术生成

牛顿冷却定律:定义了温度随时间变化的规律。

#T_now:当前温度

#T_last: 上次温度

#tx:与上次测量的时间间隔

#coefficient: 冷却系数

T_now = T_last * Exp(-(tx) * coefficient)

fe0360c8e5dd77f40f1f14eea3764834.png

可见,随着时间温度会慢慢下降,并且下降的速度越来越慢,一直到最后几乎不变 。

热门排名

温度冷却,自然而然就会想起“热门推荐”或者“热门排名”,那么是否可以使用上述的公式来做热门排名呢?答案是肯定的。

本次热门分值 = 上次统计热门分值 * exp(-1 * 系数 * 统计的时间间隔)

那么热门分值也会像温度一样慢慢下降直至最终归零,这个跟实际非常符合,之前一段时间比较热门的话题发酵一段时间后热度会慢慢下降,过一段时间后人们也不会想起它(可能偶尔会提起)。

还需要加些修正,如:新增加的点击阅读分值

新增点击分值 = A * (B - log(tx)) * 新增点击数

# A B 为系数

# tx为距离创建的时间

B - log(tx)是构造一个随时间迁移影响度越来越小的系数,为了让一些新的新闻能够比较容易上热门,因为同样是新增100次点击,tx越小,新增分值就越大,即影响度就越大,老新闻需要更多的点击才能追上新的新闻。

热门排名算法有很多,具体要看实际使用场景,如到底是否推新、正负投票等等,很多时候简单的几个属性除一下加一下就能达到很好的效果。

中文处理提取新词

提取新词的方法为统计两个字出现的概率和各自出现的概率,如满足

P(W0W1) > P(W0) * P(W1)

则说明可能为一个新词,对于一些干扰的处理可以使用冷却法,即在统计频率时,可以边统计边衰减,对于正常词来说增长比衰减要快,但是非正常词的干扰,由于出现的随机性,会被慢慢“遗忘”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值