1.背景
在很多推荐业务的场景下,我们需要提取用户的兴趣标签,进而将用户划分,进行内容的推荐。假设我们现在拥有一些用户的行为信息,比如某产品feed上的用户,今天阅读了2个时政类的新闻,昨天阅读了4个美妆类新闻,5天前又读了8篇美食类的新闻,而我们需要给用户打一个label,这个label可以是一个或者多个,我们应该怎么去做呢?
我们所拥有的信息为 用户阅读行为的分类、用户在分类下的行为频度以及用户的行为时间。显然,用户的兴趣会随着时间迁移,我们不能仅仅依靠一个指标来确定用户的label,而是需要综合时间、行为频率来进行建模。
2.牛顿冷却定律
牛顿冷却定律"非常简单,用一句话就可以概况,即“物体的冷却速度,与其当前温度与室温之间的温差成正比”,写成数学公式就是:
其中,
T(t)是温度关于时间的函数,
H代表室温,T(t)-H就是当前温度与室温之间的温差,
常数α(α>0)表示室温与降温速率之间的比例关系。
基于上述公式,我们对其进行积分,求解T(t)函数,即温度和时间的关系函数,我们可以得到,
<