一、无穷小概念
if lim(x->x0)α(x)=0 称α(x)当x趋向于x0时为无穷小(以0为极限的函数为无穷小)
二、性质
1、若α(x)->0 (x->x0), β(x)->0 (x->x0),则:
(1)α(x)+β(x)->0 (x->x0)
(2)kα(x)->0 (x->x0) k为常数
(3)α(x)β(x)->0 (x->x0)
2、limf(x)=A <=> f(x)=A+α (α->0)这在之前的文章中用到过
三、无穷小比较
1、lim(β/α)=0,则β为α的【高阶无穷小】,记为β=o(α)(小写的o)
lim(β/α)=∞,则β为α的【低阶无穷小】
可以理解为:lim(β/α)=0,说明β比α还要小,比无穷小还小就是很nb的无穷小(高阶无穷小),低阶无穷小就是没有那么小。
2、lim(β/α)=c,(c≠0,c≠∞)则β为α的【同阶无穷小】,记为β=O(α)(大写的O)
特别地:若k=1,则β为α的【等价无穷小】,记为β~α
3、lim(β/α^k)=c,(c≠0,c≠∞)则β为α的【k阶无穷小】