cosx等价无穷小_数学笔记-同济第七版高数(上)-第一章-函数与极限-无穷小比较...

本文介绍了无穷小的概念、性质,重点讲解了无穷小的比较,包括高阶无穷小、低阶无穷小和同阶无穷小,并详细探讨了等价无穷小的性质,如α~β时β=α+o(α),以及一些常见的等价无穷小实例,如x~sinx, 1-cosx~x^2/2等。" 6287257,75051,理解AES加密算法:高级数据加密标准详解及Java实现,"['算法', '加密', 'algorithm', 'Java']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、无穷小概念

if lim(x->x0)α(x)=0 称α(x)当x趋向于x0时为无穷小(以0为极限的函数为无穷小)

二、性质

1、若α(x)->0 (x->x0), β(x)->0 (x->x0),则:

(1)α(x)+β(x)->0 (x->x0)

(2)kα(x)->0 (x->x0) k为常数

(3)α(x)β(x)->0 (x->x0)

2、limf(x)=A <=> f(x)=A+α (α->0)这在之前的文章中用到过

三、无穷小比较

1、lim(β/α)=0,则β为α的【高阶无穷小】,记为β=o(α)(小写的o)

lim(β/α)=∞,则β为α的【低阶无穷小】

可以理解为:lim(β/α)=0,说明β比α还要小,比无穷小还小就是很nb的无穷小(高阶无穷小),低阶无穷小就是没有那么小。

2、lim(β/α)=c,(c≠0,c≠∞)则β为α的【同阶无穷小】,记为β=O(α)(大写的O)

特别地:若k=1,则β为α的【等价无穷小】,记为β~α

3、lim(β/α^k)=c,(c≠0,c≠∞)则β为α的【k阶无穷小】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值