算法-快速排序

在介绍快速排序之前,要先介绍一下“冒泡排序”,有助于理解快速排序;

冒泡排序
概要:
1.比较相邻的元素。如果第一个比第二个大,就交换他们两个。
2.对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
3.针对所有的元素重复以上的步骤,除了最后一个。
4.持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
图例:
这里写图片描述
冒泡排序的时间复杂度为:
O(n²)
辅:时间复杂度不包括这个函数的低阶项与首项系数;

冒泡排序介绍完,接下来就要进入主题了;

快速排序

概要:
快速排序是冒泡排序的改进版,也是最好的一种内排序,在很多面试题中都会出现,也是作为程序员必须掌握的一种排序方法。

主要思想:
1.在待排序的元素任取一个元素作为基准(通常选第一个元素,但最好的选择方法是从待排序元素中随机选取一个作为基准),称为基准元素;

2.将待排序的元素进行分区,比基准元素大的元素放在它的右边,比其小的放在它的左边;

3.对左右两个分区重复以上步骤直到所有元素都是有序的。

图例:
这里写图片描述
这里写图片描述

时间复杂度:
快速排序具有最好的平均性能,但最坏性能和插入排序相同,也是O(n^2)。比如一个序列5,4,3,2,1,要排为1,2,3,4,5。按照快速排序方法,每次只会有一个数据进入正确顺序,不能把数据分成大小相当的两份,很明显,排序的过程就成了一个歪脖子树,树的深度为n,那时间复杂度就成了O(n^2)。尽管如此,需要排序的情况几乎都是乱序的,自然性能就保证了。根据上面的图片举例来看,在数据量小于20的时候,插入排序具有最好的性能。当大于20时,快速排序具有最好的性能,归并和堆排序也望尘莫及,尽管复杂度都为nlog2(n)。

如果基准值可以将数组分成相等的两部分,则出现快速排序的最佳情况。在这种情况下,我们还要对每个大小约为 n/2 的两个子数组进行排序。在一个大小为 n 的记录中确定一个记录的位置所需要的时间为O(n)。若T(n)为对n个记录进行排序所需要的时间,则每当一个记录得到其正确位置,整组大致分成两个相等的两部分时,我们得到快速排序算法的最佳时间复杂性。
最好的性能:
  T(n) <= cn + 2T(n/2) c是一个常数
     <= cn + 2(cn/2+2T(n/4)) = 2cn+ 4T(n/4)
     <= 2cn + 4(cn/4+ 2T(n/8)) = 3cn + 8T(n/8)
      …… ……
     <= cnlogn + nT(1) = O(nlogn)
其中cn 是一次划分所用的时间,c是一个常数;

最坏的情况,每次划分都得到一个子序列,时间复杂度为
举例为:5、4、3、2、1
  T(n) = cn + T(n-1)
     = cn + c(n-1) + T(n - 2) = 2cn -c + T(n-2)
= 2cn -c + c(n - 2) + T(n-3) = 3cn -3c + T(n-3)
    ……
    = c[n(n+1)/2-1] + T(1) = O(n2)

 示意图:
 这里写图片描述

上代码:
这里写图片描述
这里写图片描述

当然这段代码是可以改进的

对一般快速排序进行一些改进可以提高其效率。
当划分到较小的子序列时,通常可以使用插入排序替代快速排序
对于较小的子序列(通常序列元素个数为10个左右),我们就可以采用插入排序直接进行排序而不用继续递归,算法改造如下:

这里写图片描述

总结
快速排序需要栈空间来实现递归,如果数组按局等方式被分割时,则最大的递归深度为 log n,需要的栈空间为 O(log n)。最坏的情况下在递归的每一级上,数组分割成长度为0的左子数组和长度为 n - 1 的右数组。这种情况下,递归的深度就成为 n,需要的栈空间为 O(n)。同时要注意递归的结束时间。
因为快速排序在进行交换时,只是根据比较基数值判断是否交换,且不是相邻元素来交换,在交换过程中可能改变相同元素的顺序,因此是一种不稳定的排序算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值