终于迎来了周末,能让我有时间把这周立的flag全部解决掉。
在上一篇pandas练习中,我有提到要把python的时间处理单独写一篇,如果有读者仔细观察的话,可以看到我用的图片就是时间模块datetime里面的一些操作。那么我们今天的要学习的内容就是datetime内建模块和pandas库中处理时间的几个函数,以及resample, re-sample是重新采集的意思,也可以理解为把时间按照一定的约定重置。
刚好最近做的pandas练习系列里面刚好有一个章节是时间序列的练习的。
所以学完基础的知识以后加上一个练习,我相信可以对这个部分能有不同的理解。
好的,让我开始快乐的时间之旅吧。
首先申明我学习这种库喜欢直接去啃官方的文档,来源在这
datetime - Basic date and time types - Python 3.7.4rc1 documentationdocs.python.org以及
pandas.to_datetime - pandas 0.24.2 documentationpandas.pydata.org还有
Resampling - pandas 0.24.2 documentationpandas.pydata.org有兴趣的伙伴也可以自己去这几个网址学习。
在今天回顾之前写的文章的过程中,我发现自己有一个很大的缺点,那就是缺乏逻辑性,之前的文多有一种随性所为的意思,所以我想从这篇文章开始,引入思维导图,这一方面方便各位读者,另一方面当我自己回头看自己的写过的文的时候,也能更加的方便的常读常新。
一、python有很多库可以用来处理时间,如:datetime,time,calendar等
而datetime常用的是datetime.datetime函数。我们今天就从datetime来入手了
学习任何一个模块的时候都应该先看这个库都有哪些模块
同样的使用导图
开始这个库之前,我们要首先看两个参数
datetime.MINYEAR=1
datetime.MAXYEAR=9999
这两个类表示的是datetime从1到9999,这对于我们的处理来说足够了,毕竟看到这篇文章的没有人可以到9999年。LOL
通过上面的图形,能够清楚的看到,datetime库最常用的是timedelta和datetime这两个类。
我们首先看一下timedelta
from datetime import datetime
now = datetime.now()
now
求解一个时间差
delta = datetime(2000,1,7) - datetime(1998,6,23,7,16)
delta