第一次作业
3.5 (a)
如果将低阶比特面设为零值,
该图像会丢失细节。
即
不同灰度值的像素个数将减
少,
这会导致直方图的成分数减少。
由于像素个数不会改变,
这将在总体上导致直方图峰值
高度上升。通常,较低的灰度值变化将减少对比度。
(b)
如果将高阶比特面设为零值,
该图像会丢失轮廓,
即丢失视觉上的很多数据。
最明显
的影响是使图像非常模糊,根据灰度变换函数,将
0~127
之间的所有灰度映射为
0
,下降的
最高位将限制到
127
的
8
位图像中最亮的水平。由于像素
数将保持不变,
一些直方图峰值的高度会增加。
一般直方图的形状将更高更窄,
过去
127
没有直方图组件。
3.18 (a)
如果这个象素块中的点都比背景亮
,
即对度大于背景
,
在
n
×n的中值滤波器中
,
和背景的象素一起排序时
,
因为它的面积小于一半
,
则可以肯定它们都比排在第
(n
×n
+1)/2
的象素要亮
,
所以没有机会被选中
,
都会被滤掉
.
对于暗的象素块
,
情况类似
.
(b)
如果两个象素块足够接近
,
而且又同时都大于或者都小于背景的灰度
,
那么在进
行中值滤波的时候
,
这些象素块中的点将会有机会被选为中值
.
在这种情况下
,
这些象素块
将无法被滤掉
,
也就是不再被认为是单独的
.
我们假设象素块是正方形的
,
大小为
n
×n一
半
.
它们的边长为
sqrt(2)/2*n,
离滤波器的最大边界距离
[1-sqrt(2)/2]*n,
所以这些块单独存
在的条件是它们之间的距离大于
[1-sqrt(2)/2]*n.
3.21
滤波后的图像是否存在清晰的间隔取决于象素间是否有明显的灰度差异
.
如下图
所示
,
分别代表了三个尺度的滤波器的情况
.
其中每个尺度滤波器的上下两个方框表示了计
算相邻象素点的灰度时所用到的邻域
. b
中的滤波器所产生的图像之所以完全混在了一起
,
是因为它的滤波器的尺度恰好是原图像周期的整数倍
.
这意位着当所计算的象素向右边移
动时
,
计算所涉及到的邻域把最左边的一列象素去掉了
,
而右边加入了一列新的象素
.
因为
邻域的大小为周期的整数倍
,
所以左边所去掉的象素灰度值和右边所加入的灰度值是相等
的
,
所以邻域内的灰度平均值没有变化
,
计算所得的灰度值也没有变化
,
整个部分混在了一
起
.
而对于
a
和
c
来说
,
当所计算的象素向右移动时
,
邻域的最左边去掉了一行黑色的象素
,
右边加入了一行白色的象素
,
因此在这个时候
,
邻域内象素的平均值增大
,
计算所得的象素
点变亮
.
从而产生了间隔的区域
.