pyecharts简介
pyecharts是基于前端可视化框架echarts的Python可视化库。该库让我们在Python里也可以充分体验到快速出图和丰富交互的数据可视化体验。
echarts主要开发者御术曾说过,和d3相比,d3是面粉而echarts相当于面条。这是个很形象的比喻,和面粉相比,面条可以快速煮出各种美食,很贴合echarts的特点。echarts开箱即用,文档详细、可以配置的参数多,且有很多改改配置就能用的例子。pyecharts也具备这一优点。
代码框架与配置项
pyecharts的可视化基本代码框架如下。
import pyechartsbar=pyecharts.charts.Bar() #初始化一个柱状图bar.add_xaxis(['Mon.','Tue.','Wed.','Thu.','Fri.']) #设置x轴bar.add_yaxis("y", [76,37,90,60,50],color='#1eafae') #y轴bar.set_global_opts(title_opts=opts.TitleOpts(title="主标题",pos_left='center'))bar.render_notebook() #在jupyter notebook中出图#bar.render('bar_charts_01.html') #保存为文件
可以看到的是,pyecharts遵循了大部分Python可视化库的写法,初始化图对象,明确是什么类型的图,设置x,y轴数据及属性,设置图元属性,出图。
pyecharts绘制交互柱状图
pyecharts本质做的是把Python语句向echarts的JavaScript语句的映射,因此更强调配置,语句上使用add_
、set_
频率高。pyecharts囊括了30+常用的图表类型,而且对于表格展示、图像显示也有对应接口,除了输出html外,支持主流notebook环境的图表显示,还能很方便地和Flask、Django等Python前端框架集成。
在语句组织上,也可以用链式调用写法,思路和上面一致,初始化,设置X/Y,设置图元属性,出图。
bar = ( Bar().add_xaxis(x).add_yaxis("y",y))bar.render()
在图元属性上,图形颜色、文本标签通过向add_yaxis
传参设置。也能通过set_colors
设置全局配色。
标题、图例等设置通过 set_global_opts
设置,从语句名字可以看出其可以设置各种全局的属性。实例语句如下:
from pyecharts import options as optsbar.set_global_opts(title_opts=opts.TitleOpts(title="主标题", subtitle="副标题",pos_left='center'), legend_opts=opts.LegendOpts(pos_left='5px'))
set_global_opts
设置的图元包括:
•title_opts:标题设置,封装为pyecharts.options.TitleOpts(),属性有title,title_link,subtitle(副标题),pos_left,pos_top,title_textstyle_opts等实用配置。所以写法为:title_opts=opts.TitleOpts()
;•legend_opts:图例配置项,可以控制是否显示图例、图例相对位置、图例每项之间的间隔等属性,