
what's new in Prism 8? - 更多的分析选择:回归
绘制残差图并检验其正态性
- 残差是Y的实际值与预测值之差,Prism 7绘制残差的一种方式是通过回归分析。Prism 8也将其扩展为可以通过ANOVA (单因素,双因素或者多因素),t检验以及多元回归。对于这几种分析,有四种方式进行残差的正态性检验,有四种方式绘制残差图(包括QQ图)。

泊松回归
- 当Y值表示对象或事件的实际计数(没有达到正态分布)时,残差预计不会遵循高斯分布,而是遵循泊松分布。Prism现在允许您指定非线性和多元回归的泊松残差,并相应地进行计算。
逻辑回归
- 当结果变量(Y值)为二元变量(是/否,1/0,有效/无效等)时,可以使用逻辑回归将模型拟合到数据中。 Prism 8.3.0的新增功能,您现在可以使用单个预测变量(X变量)执行简单的逻辑回归,或使用多个预测变量进行多重逻辑回归。
为非线性回归内置了更多的方程式
- 在Prism 8.2中,我们扩展了方程式库,这样当X表示浓度时,以及当X表示浓度的对数时,可以表示为剂量-响应方程的形式。
- Pade(1,1)近似方程,当标准曲线在高浓度下稳定时(类似于等轴双曲线)进行插值时非常有用。
- 增长方程族。这些用于从文化中细胞数量的增长到经济增长的所有事物。 提供的方程式是指数增长,指数平稳期,Gompertz,对数和β(先增长,后衰退)。
- 线性二次方程的几种形式,用于模拟暴露于辐射后的细胞死亡。
- 铰链功能。 它与分段线性回归相同,不同之处在于两条直线以平缓曲线而不是硬角度连接。
- 将直线拟合到两个数据集,找到相交点和两个斜率。
非对称(轮廓似然)置信区间
- 针对复杂的方程,Prism有时会报告“ ???” 而不是为单侧或双侧置信度给出一个数值。 在Prism之后,这将很少会发生。
- 计算非对称轮廓似然置信区间的速度快2-3倍。
新的选择
- 在非线性回归中检测“不稳定”参数:Prism 8.2中引入的新“Prism Labs”功能可替代以前用于检测不良拟合的方法。 早期版本可以检测 “模糊拟合”。 现在,通过选项设置(在非线性回归的置信Confidence选项卡上),Prism可检测“不稳定”参数。 根据我们的经验,这种方法更好,因为在新方法可以检测的时候,“模糊”方法有时无法显示结果。
- 当您需要在非线性回归中删除离群值时,现在可以让Prism使用“干净”数据创建一个结果表(不包含离群值)。
GraphPad中国官网现已上线,欢迎访问了解更多:https://www.graphpad-prism.cn