本次比赛虽然距今已有一段时间,但我想来这次的方案对从事电商行业的数据挖掘从业者或其他时序数据的研究者可能有一定的启发,用户复购问题一直是电商和其他带有销售属性的互联网公司比较关注的领域,希望本文能够帮助大家在真实的业务中较为精准地预测出用户是否会再次购买以及对应的购买时间。
赛题解读 本赛题参赛者需要根据赛题方提供的数据(用户基本信息、SKU基本信息、用户行为信息、用户下单信息及评价信息),自行设计数据处理相关操作、训练模型、预测未来1个月内最有可能购买目标品类(匿名编码成30和101)的用户,并预测他们在考察时间段内的首次购买日期。 本赛题的评价指标分为用户评价和用户下单日期评价两部分: (1)用户评价 其中,o i 表示选手预测的第 i 个用户的正确标志,当预测正确时 o i=1,否则 o i=0。N为选手提交的记录数。 (2)用户下单日期评价 其中,U r 为答案用户集合,d u 表示用户 u 的预测日期与真实日期之间的距离。 本赛题#时间预测算法_2018JDATA算法大赛——用户购买时间预测Top1方案
最新推荐文章于 2022-09-23 16:20:24 发布
本文介绍了2018JDATA算法大赛中用户购买时间预测的Top1解决方案。内容包括赛题拆解、特征工程、模型选择和优化过程。关键点包括以滑动窗口构造特征、考虑促销活动影响、处理时间跨度大带来的挑战以及如何构建稳定的线下验证集。模型使用LightGBM并融合多个模型,最终取得优异成绩。
摘要由CSDN通过智能技术生成