加布里埃尔的 answer是不正确的.在这里用红色显示他的数据的95%置信区间,由GraphPad Prism计算:
背景:“拟合曲线的置信区间”通常称为置信带.对于95%置信区间,可以95%确信它包含真实曲线. (这与预测频带不同,如上所示为灰色.预测频带是关于未来数据点.有关更多详细信息,请参见例如GraphPad曲线拟合指南的page.)
在Python中,kmpfit可以计算非线性最小二乘的置信带.这里是加布里埃尔的例子:
from pylab import *
from kapteyn import kmpfit
x, y = np.loadtxt('_exp_fit.txt', unpack=True)
def model(p, x):
a, b, c = p
return a*np.exp(b*x)+c
f = kmpfit.simplefit(model, [.1, .1, .1], x, y)
print f.params
# confidence band
a, b, c = f.params
dfdp = [np.exp(b*x), a*x*np.exp(b*x), 1]
yhat, upper, lower = f.confidence_band(x, dfdp, 0.95, model)
scatter(x, y, marker='.', s=10, color='#0000ba')
ix = np.argsort(x)
for i, l in enumerate((upper, lower, yhat)):
plot(x[ix], l[ix], c='g' if i == 2 else 'r', lw=2)
show()
dfdp是关于每个参数p(即a,b和c)的模型f = a * e ^(b * x)c的偏导数∂f/∂p.有关背景信息,请参阅GraphPad曲线拟合指南的kmpfit Tutorial或page. (与我的示例代码不同,kmpfit教程不使用库中的confidence_band(),而是使用它自己的略有不同的实现.)
最后,Python图与Prism图匹配: