python做有置信区间的拟合_python – 指数曲线拟合的置信区间

加布里埃尔的 answer是不正确的.在这里用红色显示他的数据的95%置信区间,由GraphPad Prism计算:

背景:“拟合曲线的置信区间”通常称为置信带.对于95%置信区间,可以95%确信它包含真实曲线. (这与预测频带不同,如上所示为灰色.预测频带是关于未来数据点.有关更多详细信息,请参见例如GraphPad曲线拟合指南的page.)

在Python中,kmpfit可以计算非线性最小二乘的置信带.这里是加布里埃尔的例子:

from pylab import *

from kapteyn import kmpfit

x, y = np.loadtxt('_exp_fit.txt', unpack=True)

def model(p, x):

a, b, c = p

return a*np.exp(b*x)+c

f = kmpfit.simplefit(model, [.1, .1, .1], x, y)

print f.params

# confidence band

a, b, c = f.params

dfdp = [np.exp(b*x), a*x*np.exp(b*x), 1]

yhat, upper, lower = f.confidence_band(x, dfdp, 0.95, model)

scatter(x, y, marker='.', s=10, color='#0000ba')

ix = np.argsort(x)

for i, l in enumerate((upper, lower, yhat)):

plot(x[ix], l[ix], c='g' if i == 2 else 'r', lw=2)

show()

dfdp是关于每个参数p(即a,b和c)的模型f = a * e ^(b * x)c的偏导数∂f/∂p.有关背景信息,请参阅GraphPad曲线拟合指南的kmpfit Tutorial或page. (与我的示例代码不同,kmpfit教程不使用库中的confidence_band(),而是使用它自己的略有不同的实现.)

最后,Python图与Prism图匹配:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值